Cargando…

In-lab versus at-home activity recognition in ambulatory subjects with incomplete spinal cord injury

BACKGROUND: Although commercially available activity trackers can aid in tracking therapy and recovery of patients, most devices perform poorly for patients with irregular movement patterns. Standard machine learning techniques can be applied on recorded accelerometer signals in order to classify th...

Descripción completa

Detalles Bibliográficos
Autores principales: Albert, Mark V., Azeze, Yohannes, Courtois, Michael, Jayaraman, Arun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5294819/
https://www.ncbi.nlm.nih.gov/pubmed/28166824
http://dx.doi.org/10.1186/s12984-017-0222-5
_version_ 1782505312160317440
author Albert, Mark V.
Azeze, Yohannes
Courtois, Michael
Jayaraman, Arun
author_facet Albert, Mark V.
Azeze, Yohannes
Courtois, Michael
Jayaraman, Arun
author_sort Albert, Mark V.
collection PubMed
description BACKGROUND: Although commercially available activity trackers can aid in tracking therapy and recovery of patients, most devices perform poorly for patients with irregular movement patterns. Standard machine learning techniques can be applied on recorded accelerometer signals in order to classify the activities of ambulatory subjects with incomplete spinal cord injury in a way that is specific to this population and the location of the recording—at home or in the clinic. METHODS: Subjects were instructed to perform a standardized set of movements while wearing a waist-worn accelerometer in the clinic and at-home. Activities included lying, sitting, standing, walking, wheeling, and stair climbing. Multiple classifiers and validation methods were used to quantify the ability of the machine learning techniques to distinguish the activities recorded in-lab or at-home. RESULTS: In the lab, classifiers trained and tested using within-subject cross-validation provided an accuracy of 91.6%. When the classifier was trained on data collected in the lab but tested on at home data, the accuracy fell to 54.6% indicating distinct movement patterns between locations. However, the accuracy of the at-home classifications, when training the classifier with at-home data, improved to 85.9%. CONCLUSION: Individuals with unique movement patterns can benefit from using tailored activity recognition algorithms easily implemented using modern machine learning methods on collected movement data.
format Online
Article
Text
id pubmed-5294819
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-52948192017-02-09 In-lab versus at-home activity recognition in ambulatory subjects with incomplete spinal cord injury Albert, Mark V. Azeze, Yohannes Courtois, Michael Jayaraman, Arun J Neuroeng Rehabil Research BACKGROUND: Although commercially available activity trackers can aid in tracking therapy and recovery of patients, most devices perform poorly for patients with irregular movement patterns. Standard machine learning techniques can be applied on recorded accelerometer signals in order to classify the activities of ambulatory subjects with incomplete spinal cord injury in a way that is specific to this population and the location of the recording—at home or in the clinic. METHODS: Subjects were instructed to perform a standardized set of movements while wearing a waist-worn accelerometer in the clinic and at-home. Activities included lying, sitting, standing, walking, wheeling, and stair climbing. Multiple classifiers and validation methods were used to quantify the ability of the machine learning techniques to distinguish the activities recorded in-lab or at-home. RESULTS: In the lab, classifiers trained and tested using within-subject cross-validation provided an accuracy of 91.6%. When the classifier was trained on data collected in the lab but tested on at home data, the accuracy fell to 54.6% indicating distinct movement patterns between locations. However, the accuracy of the at-home classifications, when training the classifier with at-home data, improved to 85.9%. CONCLUSION: Individuals with unique movement patterns can benefit from using tailored activity recognition algorithms easily implemented using modern machine learning methods on collected movement data. BioMed Central 2017-02-06 /pmc/articles/PMC5294819/ /pubmed/28166824 http://dx.doi.org/10.1186/s12984-017-0222-5 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Albert, Mark V.
Azeze, Yohannes
Courtois, Michael
Jayaraman, Arun
In-lab versus at-home activity recognition in ambulatory subjects with incomplete spinal cord injury
title In-lab versus at-home activity recognition in ambulatory subjects with incomplete spinal cord injury
title_full In-lab versus at-home activity recognition in ambulatory subjects with incomplete spinal cord injury
title_fullStr In-lab versus at-home activity recognition in ambulatory subjects with incomplete spinal cord injury
title_full_unstemmed In-lab versus at-home activity recognition in ambulatory subjects with incomplete spinal cord injury
title_short In-lab versus at-home activity recognition in ambulatory subjects with incomplete spinal cord injury
title_sort in-lab versus at-home activity recognition in ambulatory subjects with incomplete spinal cord injury
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5294819/
https://www.ncbi.nlm.nih.gov/pubmed/28166824
http://dx.doi.org/10.1186/s12984-017-0222-5
work_keys_str_mv AT albertmarkv inlabversusathomeactivityrecognitioninambulatorysubjectswithincompletespinalcordinjury
AT azezeyohannes inlabversusathomeactivityrecognitioninambulatorysubjectswithincompletespinalcordinjury
AT courtoismichael inlabversusathomeactivityrecognitioninambulatorysubjectswithincompletespinalcordinjury
AT jayaramanarun inlabversusathomeactivityrecognitioninambulatorysubjectswithincompletespinalcordinjury