Cargando…
Markov State Models of gene regulatory networks
BACKGROUND: Gene regulatory networks with dynamics characterized by multiple stable states underlie cell fate-decisions. Quantitative models that can link molecular-level knowledge of gene regulation to a global understanding of network dynamics have the potential to guide cell-reprogramming strateg...
Autores principales: | Chu, Brian K., Tse, Margaret J., Sato, Royce R., Read, Elizabeth L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5294885/ https://www.ncbi.nlm.nih.gov/pubmed/28166778 http://dx.doi.org/10.1186/s12918-017-0394-4 |
Ejemplares similares
-
Learning a Markov Logic network for supervised gene regulatory network inference
por: Brouard, Céline, et al.
Publicado: (2013) -
Hidden Markov induced Dynamic Bayesian Network for recovering time evolving gene regulatory networks
por: Zhu, Shijia, et al.
Publicado: (2015) -
Enhancing gene regulatory network inference through data integration with markov random fields
por: Banf, Michael, et al.
Publicado: (2017) -
Gene regulatory network inference based on a nonhomogeneous dynamic Bayesian network model with an improved Markov Monte Carlo sampling
por: Zhang, Jiayao, et al.
Publicado: (2023) -
Building Markov state models with solvent dynamics
por: Gu, Chen, et al.
Publicado: (2013)