Cargando…

The Use and Interpretation of Sodium Concentrations in Casual (Spot) Urine Collections for Population Surveillance and Partitioning of Dietary Iodine Intake Sources

In 2013, the World Health Organization (WHO) called for joint surveillance of population salt and iodine intakes using urinary analysis. 24-h urine collection is considered the gold standard for salt intake assessment, but there is an emerging consensus that casual urine sampling can provide compara...

Descripción completa

Detalles Bibliográficos
Autores principales: Conkle, Joel, van der Haar, Frits
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5295051/
https://www.ncbi.nlm.nih.gov/pubmed/28025546
http://dx.doi.org/10.3390/nu9010007
_version_ 1782505355066998784
author Conkle, Joel
van der Haar, Frits
author_facet Conkle, Joel
van der Haar, Frits
author_sort Conkle, Joel
collection PubMed
description In 2013, the World Health Organization (WHO) called for joint surveillance of population salt and iodine intakes using urinary analysis. 24-h urine collection is considered the gold standard for salt intake assessment, but there is an emerging consensus that casual urine sampling can provide comparable information for population-level surveillance. Our review covers the use of the urinary sodium concentration (UNaC) and the urinary iodine concentration (UIC) from casual urine samples to estimate salt intakes and to partition the sources of iodine intakes. We reviewed literature on 24-h urinary sodium excretion (UNaE) and UNaC and documented the use of UNaC for national salt intake monitoring. We combined information from our review of urinary sodium with evidence on urinary iodine to assess the appropriateness of partitioning methods currently being adapted for cross-sectional survey analyses. At least nine countries are using casual urine collection for surveillance of population salt intakes; all these countries used single samples. Time trend analyses indicate that single UNaC can be used for monitoring changes in mean salt intakes. However; single UNaC suffers the same limitation as single UNaE; i.e., an estimate of the proportion excess salt intake can be biased due to high individual variability. There is evidence, albeit limited, that repeat UNaC sampling has good agreement at the population level with repeat UNaE collections; thus permitting an unbiased estimate of the proportion of excess salt intake. High variability of UIC and UNaC in single urine samples may also bias the estimates of dietary iodine intake sources. Our review concludes that repeated collection, in a sub-sample of individuals, of casual UNaC data would provide an immediate practical approach for routine monitoring of salt intake, because it overcomes the bias in estimates of excess salt intake. Thus we recommend more survey research to expand the evidence-base on predicted-UNaE from repeat casual UNaC sampling. We also conclude that the methodology for partitioning the sources of iodine intake based on the combination of UIC and UNaC measurements in casual urine samples can be improved by repeat collections of casual data; which helps to reduce regression dilution bias. We recommend more survey research to determine the effect of regression dilution bias and circadian rhythms on the partitioning of dietary iodine intake sources.
format Online
Article
Text
id pubmed-5295051
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-52950512017-02-10 The Use and Interpretation of Sodium Concentrations in Casual (Spot) Urine Collections for Population Surveillance and Partitioning of Dietary Iodine Intake Sources Conkle, Joel van der Haar, Frits Nutrients Review In 2013, the World Health Organization (WHO) called for joint surveillance of population salt and iodine intakes using urinary analysis. 24-h urine collection is considered the gold standard for salt intake assessment, but there is an emerging consensus that casual urine sampling can provide comparable information for population-level surveillance. Our review covers the use of the urinary sodium concentration (UNaC) and the urinary iodine concentration (UIC) from casual urine samples to estimate salt intakes and to partition the sources of iodine intakes. We reviewed literature on 24-h urinary sodium excretion (UNaE) and UNaC and documented the use of UNaC for national salt intake monitoring. We combined information from our review of urinary sodium with evidence on urinary iodine to assess the appropriateness of partitioning methods currently being adapted for cross-sectional survey analyses. At least nine countries are using casual urine collection for surveillance of population salt intakes; all these countries used single samples. Time trend analyses indicate that single UNaC can be used for monitoring changes in mean salt intakes. However; single UNaC suffers the same limitation as single UNaE; i.e., an estimate of the proportion excess salt intake can be biased due to high individual variability. There is evidence, albeit limited, that repeat UNaC sampling has good agreement at the population level with repeat UNaE collections; thus permitting an unbiased estimate of the proportion of excess salt intake. High variability of UIC and UNaC in single urine samples may also bias the estimates of dietary iodine intake sources. Our review concludes that repeated collection, in a sub-sample of individuals, of casual UNaC data would provide an immediate practical approach for routine monitoring of salt intake, because it overcomes the bias in estimates of excess salt intake. Thus we recommend more survey research to expand the evidence-base on predicted-UNaE from repeat casual UNaC sampling. We also conclude that the methodology for partitioning the sources of iodine intake based on the combination of UIC and UNaC measurements in casual urine samples can be improved by repeat collections of casual data; which helps to reduce regression dilution bias. We recommend more survey research to determine the effect of regression dilution bias and circadian rhythms on the partitioning of dietary iodine intake sources. MDPI 2016-12-23 /pmc/articles/PMC5295051/ /pubmed/28025546 http://dx.doi.org/10.3390/nu9010007 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Conkle, Joel
van der Haar, Frits
The Use and Interpretation of Sodium Concentrations in Casual (Spot) Urine Collections for Population Surveillance and Partitioning of Dietary Iodine Intake Sources
title The Use and Interpretation of Sodium Concentrations in Casual (Spot) Urine Collections for Population Surveillance and Partitioning of Dietary Iodine Intake Sources
title_full The Use and Interpretation of Sodium Concentrations in Casual (Spot) Urine Collections for Population Surveillance and Partitioning of Dietary Iodine Intake Sources
title_fullStr The Use and Interpretation of Sodium Concentrations in Casual (Spot) Urine Collections for Population Surveillance and Partitioning of Dietary Iodine Intake Sources
title_full_unstemmed The Use and Interpretation of Sodium Concentrations in Casual (Spot) Urine Collections for Population Surveillance and Partitioning of Dietary Iodine Intake Sources
title_short The Use and Interpretation of Sodium Concentrations in Casual (Spot) Urine Collections for Population Surveillance and Partitioning of Dietary Iodine Intake Sources
title_sort use and interpretation of sodium concentrations in casual (spot) urine collections for population surveillance and partitioning of dietary iodine intake sources
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5295051/
https://www.ncbi.nlm.nih.gov/pubmed/28025546
http://dx.doi.org/10.3390/nu9010007
work_keys_str_mv AT conklejoel theuseandinterpretationofsodiumconcentrationsincasualspoturinecollectionsforpopulationsurveillanceandpartitioningofdietaryiodineintakesources
AT vanderhaarfrits theuseandinterpretationofsodiumconcentrationsincasualspoturinecollectionsforpopulationsurveillanceandpartitioningofdietaryiodineintakesources
AT conklejoel useandinterpretationofsodiumconcentrationsincasualspoturinecollectionsforpopulationsurveillanceandpartitioningofdietaryiodineintakesources
AT vanderhaarfrits useandinterpretationofsodiumconcentrationsincasualspoturinecollectionsforpopulationsurveillanceandpartitioningofdietaryiodineintakesources