Cargando…

Performance and Cost-Effectiveness of Computed Tomography Lung Cancer Screening Scenarios in a Population-Based Setting: A Microsimulation Modeling Analysis in Ontario, Canada

BACKGROUND: The National Lung Screening Trial (NLST) results indicate that computed tomography (CT) lung cancer screening for current and former smokers with three annual screens can be cost-effective in a trial setting. However, the cost-effectiveness in a population-based setting with >3 screen...

Descripción completa

Detalles Bibliográficos
Autores principales: ten Haaf, Kevin, Tammemägi, Martin C., Bondy, Susan J., van der Aalst, Carlijn M., Gu, Sumei, McGregor, S. Elizabeth, Nicholas, Garth, de Koning, Harry J., Paszat, Lawrence F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5295664/
https://www.ncbi.nlm.nih.gov/pubmed/28170394
http://dx.doi.org/10.1371/journal.pmed.1002225
_version_ 1782505480121221120
author ten Haaf, Kevin
Tammemägi, Martin C.
Bondy, Susan J.
van der Aalst, Carlijn M.
Gu, Sumei
McGregor, S. Elizabeth
Nicholas, Garth
de Koning, Harry J.
Paszat, Lawrence F.
author_facet ten Haaf, Kevin
Tammemägi, Martin C.
Bondy, Susan J.
van der Aalst, Carlijn M.
Gu, Sumei
McGregor, S. Elizabeth
Nicholas, Garth
de Koning, Harry J.
Paszat, Lawrence F.
author_sort ten Haaf, Kevin
collection PubMed
description BACKGROUND: The National Lung Screening Trial (NLST) results indicate that computed tomography (CT) lung cancer screening for current and former smokers with three annual screens can be cost-effective in a trial setting. However, the cost-effectiveness in a population-based setting with >3 screening rounds is uncertain. Therefore, the objective of this study was to estimate the cost-effectiveness of lung cancer screening in a population-based setting in Ontario, Canada, and evaluate the effects of screening eligibility criteria. METHODS AND FINDINGS: This study used microsimulation modeling informed by various data sources, including the Ontario Health Insurance Plan (OHIP), Ontario Cancer Registry, smoking behavior surveys, and the NLST. Persons, born between 1940 and 1969, were examined from a third-party health care payer perspective across a lifetime horizon. Starting in 2015, 576 CT screening scenarios were examined, varying by age to start and end screening, smoking eligibility criteria, and screening interval. Among the examined outcome measures were lung cancer deaths averted, life-years gained, percentage ever screened, costs (in 2015 Canadian dollars), and overdiagnosis. The results of the base-case analysis indicated that annual screening was more cost-effective than biennial screening. Scenarios with eligibility criteria that required as few as 20 pack-years were dominated by scenarios that required higher numbers of accumulated pack-years. In general, scenarios that applied stringent smoking eligibility criteria (i.e., requiring higher levels of accumulated smoking exposure) were more cost-effective than scenarios with less stringent smoking eligibility criteria, with modest differences in life-years gained. Annual screening between ages 55–75 for persons who smoked ≥40 pack-years and who currently smoke or quit ≤10 y ago yielded an incremental cost-effectiveness ratio of $41,136 Canadian dollars ($33,825 in May 1, 2015, United States dollars) per life-year gained (compared to annual screening between ages 60–75 for persons who smoked ≥40 pack-years and who currently smoke or quit ≤10 y ago), which was considered optimal at a cost-effectiveness threshold of $50,000 Canadian dollars ($41,114 May 1, 2015, US dollars). If 50% lower or higher attributable costs were assumed, the incremental cost-effectiveness ratio of this scenario was estimated to be $38,240 ($31,444 May 1, 2015, US dollars) or $48,525 ($39,901 May 1, 2015, US dollars), respectively. If 50% lower or higher costs for CT examinations were assumed, the incremental cost-effectiveness ratio of this scenario was estimated to be $28,630 ($23,542 May 1, 2015, US dollars) or $73,507 ($60,443 May 1, 2015, US dollars), respectively. This scenario would screen 9.56% (499,261 individuals) of the total population (ever- and never-smokers) at least once, which would require 4,788,523 CT examinations, and reduce lung cancer mortality in the total population by 9.05% (preventing 13,108 lung cancer deaths), while 12.53% of screen-detected cancers would be overdiagnosed (4,282 overdiagnosed cases). Sensitivity analyses indicated that the overall results were most sensitive to variations in CT examination costs. Quality of life was not incorporated in the analyses, and assumptions for follow-up procedures were based on data from the NLST, which may not be generalizable to a population-based setting. CONCLUSIONS: Lung cancer screening with stringent smoking eligibility criteria can be cost-effective in a population-based setting.
format Online
Article
Text
id pubmed-5295664
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-52956642017-02-17 Performance and Cost-Effectiveness of Computed Tomography Lung Cancer Screening Scenarios in a Population-Based Setting: A Microsimulation Modeling Analysis in Ontario, Canada ten Haaf, Kevin Tammemägi, Martin C. Bondy, Susan J. van der Aalst, Carlijn M. Gu, Sumei McGregor, S. Elizabeth Nicholas, Garth de Koning, Harry J. Paszat, Lawrence F. PLoS Med Research Article BACKGROUND: The National Lung Screening Trial (NLST) results indicate that computed tomography (CT) lung cancer screening for current and former smokers with three annual screens can be cost-effective in a trial setting. However, the cost-effectiveness in a population-based setting with >3 screening rounds is uncertain. Therefore, the objective of this study was to estimate the cost-effectiveness of lung cancer screening in a population-based setting in Ontario, Canada, and evaluate the effects of screening eligibility criteria. METHODS AND FINDINGS: This study used microsimulation modeling informed by various data sources, including the Ontario Health Insurance Plan (OHIP), Ontario Cancer Registry, smoking behavior surveys, and the NLST. Persons, born between 1940 and 1969, were examined from a third-party health care payer perspective across a lifetime horizon. Starting in 2015, 576 CT screening scenarios were examined, varying by age to start and end screening, smoking eligibility criteria, and screening interval. Among the examined outcome measures were lung cancer deaths averted, life-years gained, percentage ever screened, costs (in 2015 Canadian dollars), and overdiagnosis. The results of the base-case analysis indicated that annual screening was more cost-effective than biennial screening. Scenarios with eligibility criteria that required as few as 20 pack-years were dominated by scenarios that required higher numbers of accumulated pack-years. In general, scenarios that applied stringent smoking eligibility criteria (i.e., requiring higher levels of accumulated smoking exposure) were more cost-effective than scenarios with less stringent smoking eligibility criteria, with modest differences in life-years gained. Annual screening between ages 55–75 for persons who smoked ≥40 pack-years and who currently smoke or quit ≤10 y ago yielded an incremental cost-effectiveness ratio of $41,136 Canadian dollars ($33,825 in May 1, 2015, United States dollars) per life-year gained (compared to annual screening between ages 60–75 for persons who smoked ≥40 pack-years and who currently smoke or quit ≤10 y ago), which was considered optimal at a cost-effectiveness threshold of $50,000 Canadian dollars ($41,114 May 1, 2015, US dollars). If 50% lower or higher attributable costs were assumed, the incremental cost-effectiveness ratio of this scenario was estimated to be $38,240 ($31,444 May 1, 2015, US dollars) or $48,525 ($39,901 May 1, 2015, US dollars), respectively. If 50% lower or higher costs for CT examinations were assumed, the incremental cost-effectiveness ratio of this scenario was estimated to be $28,630 ($23,542 May 1, 2015, US dollars) or $73,507 ($60,443 May 1, 2015, US dollars), respectively. This scenario would screen 9.56% (499,261 individuals) of the total population (ever- and never-smokers) at least once, which would require 4,788,523 CT examinations, and reduce lung cancer mortality in the total population by 9.05% (preventing 13,108 lung cancer deaths), while 12.53% of screen-detected cancers would be overdiagnosed (4,282 overdiagnosed cases). Sensitivity analyses indicated that the overall results were most sensitive to variations in CT examination costs. Quality of life was not incorporated in the analyses, and assumptions for follow-up procedures were based on data from the NLST, which may not be generalizable to a population-based setting. CONCLUSIONS: Lung cancer screening with stringent smoking eligibility criteria can be cost-effective in a population-based setting. Public Library of Science 2017-02-07 /pmc/articles/PMC5295664/ /pubmed/28170394 http://dx.doi.org/10.1371/journal.pmed.1002225 Text en © 2017 ten Haaf et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
ten Haaf, Kevin
Tammemägi, Martin C.
Bondy, Susan J.
van der Aalst, Carlijn M.
Gu, Sumei
McGregor, S. Elizabeth
Nicholas, Garth
de Koning, Harry J.
Paszat, Lawrence F.
Performance and Cost-Effectiveness of Computed Tomography Lung Cancer Screening Scenarios in a Population-Based Setting: A Microsimulation Modeling Analysis in Ontario, Canada
title Performance and Cost-Effectiveness of Computed Tomography Lung Cancer Screening Scenarios in a Population-Based Setting: A Microsimulation Modeling Analysis in Ontario, Canada
title_full Performance and Cost-Effectiveness of Computed Tomography Lung Cancer Screening Scenarios in a Population-Based Setting: A Microsimulation Modeling Analysis in Ontario, Canada
title_fullStr Performance and Cost-Effectiveness of Computed Tomography Lung Cancer Screening Scenarios in a Population-Based Setting: A Microsimulation Modeling Analysis in Ontario, Canada
title_full_unstemmed Performance and Cost-Effectiveness of Computed Tomography Lung Cancer Screening Scenarios in a Population-Based Setting: A Microsimulation Modeling Analysis in Ontario, Canada
title_short Performance and Cost-Effectiveness of Computed Tomography Lung Cancer Screening Scenarios in a Population-Based Setting: A Microsimulation Modeling Analysis in Ontario, Canada
title_sort performance and cost-effectiveness of computed tomography lung cancer screening scenarios in a population-based setting: a microsimulation modeling analysis in ontario, canada
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5295664/
https://www.ncbi.nlm.nih.gov/pubmed/28170394
http://dx.doi.org/10.1371/journal.pmed.1002225
work_keys_str_mv AT tenhaafkevin performanceandcosteffectivenessofcomputedtomographylungcancerscreeningscenariosinapopulationbasedsettingamicrosimulationmodelinganalysisinontariocanada
AT tammemagimartinc performanceandcosteffectivenessofcomputedtomographylungcancerscreeningscenariosinapopulationbasedsettingamicrosimulationmodelinganalysisinontariocanada
AT bondysusanj performanceandcosteffectivenessofcomputedtomographylungcancerscreeningscenariosinapopulationbasedsettingamicrosimulationmodelinganalysisinontariocanada
AT vanderaalstcarlijnm performanceandcosteffectivenessofcomputedtomographylungcancerscreeningscenariosinapopulationbasedsettingamicrosimulationmodelinganalysisinontariocanada
AT gusumei performanceandcosteffectivenessofcomputedtomographylungcancerscreeningscenariosinapopulationbasedsettingamicrosimulationmodelinganalysisinontariocanada
AT mcgregorselizabeth performanceandcosteffectivenessofcomputedtomographylungcancerscreeningscenariosinapopulationbasedsettingamicrosimulationmodelinganalysisinontariocanada
AT nicholasgarth performanceandcosteffectivenessofcomputedtomographylungcancerscreeningscenariosinapopulationbasedsettingamicrosimulationmodelinganalysisinontariocanada
AT dekoningharryj performanceandcosteffectivenessofcomputedtomographylungcancerscreeningscenariosinapopulationbasedsettingamicrosimulationmodelinganalysisinontariocanada
AT paszatlawrencef performanceandcosteffectivenessofcomputedtomographylungcancerscreeningscenariosinapopulationbasedsettingamicrosimulationmodelinganalysisinontariocanada