Cargando…

Motor Learning Abilities Are Similar in Hemiplegic Cerebral Palsy Compared to Controls as Assessed by Adaptation to Unilateral Leg-Weighting during Gait: Part I

Introduction: Individuals with cerebral palsy (CP) demonstrate high response variability to motor training insufficiently accounted for by age or severity. We propose here that differences in the inherent ability to learn new motor tasks may explain some of this variability. Damage to motor pathways...

Descripción completa

Detalles Bibliográficos
Autores principales: Damiano, Diane L., Stanley, Christopher J., Bulea, Thomas C., Park, Hyung Soon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5296333/
https://www.ncbi.nlm.nih.gov/pubmed/28228720
http://dx.doi.org/10.3389/fnhum.2017.00049
Descripción
Sumario:Introduction: Individuals with cerebral palsy (CP) demonstrate high response variability to motor training insufficiently accounted for by age or severity. We propose here that differences in the inherent ability to learn new motor tasks may explain some of this variability. Damage to motor pathways involving the cerebellum, which may be a direct or indirect effect of the brain injury for many with CP, has been shown to adversely affect the ability to learn new motor tasks and may be a potential explanation. Classic adaptation paradigms that evaluate cerebellar integrity have been utilized to assess adaptation to gait perturbations in adults with stroke, traumatic brain injury and other neurological injuries but not in children with CP. Materials and Methods: A case-control study of 10 participants with and 10 without hemiplegic CP within the age range of 5–20 years was conducted. Mean age of participants in the CP group was slightly but not significantly higher than controls. Step length and swing time adaptation, defined as gradual accommodation to a perturbation, and aftereffects, or maintenance of the accommodation upon removal of the perturbation, to unilateral leg weighing during treadmill gait were quantified to assess group differences in learning. Results: Adaptation and aftereffects were demonstrated in step length across groups with no main effect for group. In CP, the dominant leg had a greater response when either leg was weighted. Swing time accommodated immediately (no adaptation) in the weighted leg only, with the non-dominant leg instead showing a more pronounced response in CP. Discussion: This group of participants with unilateral CP did not demonstrate poorer learning or retention similar to reported results in adult stroke. Deficits, while not found here, may become evident in those with other etiologies or greater severity of CP. Our data further corroborate an observation from the stroke literature that repeated practice of exaggerating the asymmetry (error augmentation), in this case by weighting the more involved or shorter step leg, vs. minimizing it by weighting the less involved or longer step leg (error reduction) may be a useful training strategy to improve step symmetry in unilateral CP.