Cargando…
Application of Machine-Learning Models to Predict Tacrolimus Stable Dose in Renal Transplant Recipients
Tacrolimus has a narrow therapeutic window and considerable variability in clinical use. Our goal was to compare the performance of multiple linear regression (MLR) and eight machine learning techniques in pharmacogenetic algorithm-based prediction of tacrolimus stable dose (TSD) in a large Chinese...
Autores principales: | Tang, Jie, Liu, Rong, Zhang, Yue-Li, Liu, Mou-Ze, Hu, Yong-Fang, Shao, Ming-Jie, Zhu, Li-Jun, Xin, Hua-Wen, Feng, Gui-Wen, Shang, Wen-Jun, Meng, Xiang-Guang, Zhang, Li-Rong, Ming, Ying-Zi, Zhang, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5296901/ https://www.ncbi.nlm.nih.gov/pubmed/28176850 http://dx.doi.org/10.1038/srep42192 |
Ejemplares similares
-
Corrigendum: Application of Machine-Learning Models to Predict Tacrolimus Stable Dose in Renal Transplant Recipients
por: Tang, Jie, et al.
Publicado: (2018) -
A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques
por: Zhang, Qiwen, et al.
Publicado: (2022) -
The therapeutic effect of switching from tacrolimus to low-dose cyclosporine A in renal transplant recipients with BK virus nephropathy
por: Chen, Xu-Tao, et al.
Publicado: (2019) -
Systematic conversion to generic tacrolimus in stable kidney transplant recipients
por: Rosenborg, Staffan, et al.
Publicado: (2014) -
Immunomodulation in stable renal transplant recipients with concomitant tacrolimus and sirolimus therapy
por: Khanna, Ashwani, et al.
Publicado: (2002)