Cargando…
A Genetic-Based Feature Selection Approach in the Identification of Left/Right Hand Motor Imagery for a Brain-Computer Interface
Electroencephalography is a non-invasive measure of the brain electrical activity generated by millions of neurons. Feature extraction in electroencephalography analysis is a core issue that may lead to accurate brain mental state classification. This paper presents a new feature selection method th...
Autores principales: | Yaacoub, Charles, Mhanna, Georges, Rihana, Sandy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5297301/ https://www.ncbi.nlm.nih.gov/pubmed/28124985 http://dx.doi.org/10.3390/brainsci7010012 |
Ejemplares similares
-
Body-Specific Motor Imagery of Hand Actions: Neural Evidence from Right- and Left-Handers
por: Willems, Roel M., et al.
Publicado: (2009) -
Clustered event related spectral perturbation (ERSP) feature in right hand motor imagery classification
por: Zhang, Zhongjie, et al.
Publicado: (2022) -
An Investigation of the Differences and Similarities between Generated Small-World Networks for Right- and Left-Hand Motor Imageries
por: Zhang, Jiang, et al.
Publicado: (2016) -
Vividness of Visual Imagery and Personality Impact Motor-Imagery Brain Computer Interfaces
por: Leeuwis, Nikki, et al.
Publicado: (2021) -
EEG datasets for motor imagery brain–computer interface
por: Cho, Hohyun, et al.
Publicado: (2017)