Cargando…
BAG2 Interferes with CHIP-Mediated Ubiquitination of HSP72
The maintenance of cellular proteostasis is dependent on molecular chaperones and protein degradation pathways. Chaperones facilitate protein folding, maturation, and degradation, and the particular fate of a misfolded protein is determined by the interaction of chaperones with co-chaperones. The co...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5297704/ https://www.ncbi.nlm.nih.gov/pubmed/28042827 http://dx.doi.org/10.3390/ijms18010069 |
_version_ | 1782505764326211584 |
---|---|
author | Schönbühler, Bianca Schmitt, Verena Huesmann, Heike Kern, Andreas Gamerdinger, Martin Behl, Christian |
author_facet | Schönbühler, Bianca Schmitt, Verena Huesmann, Heike Kern, Andreas Gamerdinger, Martin Behl, Christian |
author_sort | Schönbühler, Bianca |
collection | PubMed |
description | The maintenance of cellular proteostasis is dependent on molecular chaperones and protein degradation pathways. Chaperones facilitate protein folding, maturation, and degradation, and the particular fate of a misfolded protein is determined by the interaction of chaperones with co-chaperones. The co-factor CHIP (C-terminus of HSP70-inteacting protein, STUB1) ubiquitinates chaperone substrates and directs proteins to the cellular degradation systems. The activity of CHIP is regulated by two co-chaperones, BAG2 and HSPBP1, which are potent inhibitors of the E3 ubiquitin ligase activity. Here, we examined the functional correlation of HSP72, CHIP, and BAG2, employing human primary fibroblasts. We showed that HSP72 is a substrate of CHIP and that BAG2 efficiently prevented the ubiquitination of HSP72 in young cells as well as aged cells. Aging is associated with a decline in proteostasis and we observed increased protein levels of CHIP as well as BAG2 in senescent cells. Interestingly, the ubiquitination of HSP72 was strongly reduced during aging, which revealed that BAG2 functionally counteracted the increased levels of CHIP. Interestingly, HSPBP1 protein levels were down-regulated during aging. The data presented here demonstrates that the co-chaperone BAG2 influences HSP72 protein levels and is an important modulator of the ubiquitination activity of CHIP in young as well as aged cells. |
format | Online Article Text |
id | pubmed-5297704 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-52977042017-02-10 BAG2 Interferes with CHIP-Mediated Ubiquitination of HSP72 Schönbühler, Bianca Schmitt, Verena Huesmann, Heike Kern, Andreas Gamerdinger, Martin Behl, Christian Int J Mol Sci Article The maintenance of cellular proteostasis is dependent on molecular chaperones and protein degradation pathways. Chaperones facilitate protein folding, maturation, and degradation, and the particular fate of a misfolded protein is determined by the interaction of chaperones with co-chaperones. The co-factor CHIP (C-terminus of HSP70-inteacting protein, STUB1) ubiquitinates chaperone substrates and directs proteins to the cellular degradation systems. The activity of CHIP is regulated by two co-chaperones, BAG2 and HSPBP1, which are potent inhibitors of the E3 ubiquitin ligase activity. Here, we examined the functional correlation of HSP72, CHIP, and BAG2, employing human primary fibroblasts. We showed that HSP72 is a substrate of CHIP and that BAG2 efficiently prevented the ubiquitination of HSP72 in young cells as well as aged cells. Aging is associated with a decline in proteostasis and we observed increased protein levels of CHIP as well as BAG2 in senescent cells. Interestingly, the ubiquitination of HSP72 was strongly reduced during aging, which revealed that BAG2 functionally counteracted the increased levels of CHIP. Interestingly, HSPBP1 protein levels were down-regulated during aging. The data presented here demonstrates that the co-chaperone BAG2 influences HSP72 protein levels and is an important modulator of the ubiquitination activity of CHIP in young as well as aged cells. MDPI 2016-12-30 /pmc/articles/PMC5297704/ /pubmed/28042827 http://dx.doi.org/10.3390/ijms18010069 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Schönbühler, Bianca Schmitt, Verena Huesmann, Heike Kern, Andreas Gamerdinger, Martin Behl, Christian BAG2 Interferes with CHIP-Mediated Ubiquitination of HSP72 |
title | BAG2 Interferes with CHIP-Mediated Ubiquitination of HSP72 |
title_full | BAG2 Interferes with CHIP-Mediated Ubiquitination of HSP72 |
title_fullStr | BAG2 Interferes with CHIP-Mediated Ubiquitination of HSP72 |
title_full_unstemmed | BAG2 Interferes with CHIP-Mediated Ubiquitination of HSP72 |
title_short | BAG2 Interferes with CHIP-Mediated Ubiquitination of HSP72 |
title_sort | bag2 interferes with chip-mediated ubiquitination of hsp72 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5297704/ https://www.ncbi.nlm.nih.gov/pubmed/28042827 http://dx.doi.org/10.3390/ijms18010069 |
work_keys_str_mv | AT schonbuhlerbianca bag2interfereswithchipmediatedubiquitinationofhsp72 AT schmittverena bag2interfereswithchipmediatedubiquitinationofhsp72 AT huesmannheike bag2interfereswithchipmediatedubiquitinationofhsp72 AT kernandreas bag2interfereswithchipmediatedubiquitinationofhsp72 AT gamerdingermartin bag2interfereswithchipmediatedubiquitinationofhsp72 AT behlchristian bag2interfereswithchipmediatedubiquitinationofhsp72 |