Cargando…
Characterization of a Fetal Liver Cell Population Endowed with Long‐Term Multiorgan Endothelial Reconstitution Potential
Stable reconstitution of vascular endothelial beds upon transplantation of progenitor cells represents an important challenge due to the paucity and generally limited integration/expansion potential of most identified vascular related cell subsets. We previously showed that mouse fetal liver (FL) he...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5298023/ https://www.ncbi.nlm.nih.gov/pubmed/27615355 http://dx.doi.org/10.1002/stem.2494 |
_version_ | 1782505822398447616 |
---|---|
author | Cañete, Ana Comaills, Valentine Prados, Isabel Castro, Ana María Hammad, Seddik Ybot‐Gonzalez, Patricia Bockamp, Ernesto Hengstler, Jan G. Gottgens, Bertie Sánchez, María José |
author_facet | Cañete, Ana Comaills, Valentine Prados, Isabel Castro, Ana María Hammad, Seddik Ybot‐Gonzalez, Patricia Bockamp, Ernesto Hengstler, Jan G. Gottgens, Bertie Sánchez, María José |
author_sort | Cañete, Ana |
collection | PubMed |
description | Stable reconstitution of vascular endothelial beds upon transplantation of progenitor cells represents an important challenge due to the paucity and generally limited integration/expansion potential of most identified vascular related cell subsets. We previously showed that mouse fetal liver (FL) hemato/vascular cells from day 12 of gestation (E12), expressing the Stem Cell Leukaemia (SCL) gene enhancer transgene (SCL‐PLAP(+) cells), had robust endothelial engraftment potential when transferred to the blood stream of newborns or adult conditioned recipients, compared to the scarce vascular contribution of adult bone marrow cells. However, the specific SCL‐PLAP(+) hematopoietic or endothelial cell subset responsible for the long‐term reconstituting endothelial cell (LTR‐EC) activity and its confinement to FL developmental stages remained unknown. Using a busulfan‐treated newborn transplantation model, we show that LTR‐EC activity is restricted to the SCL‐PLAP(+)VE‐cadherin(+)CD45(−) cell population, devoid of hematopoietic reconstitution activity and largely composed by Lyve1(+) endothelial‐committed cells. SCL‐PLAP(+) Ve‐cadherin(+)CD45(−) cells contributed to the liver sinusoidal endothelium and also to the heart, kidney and lung microvasculature. LTR‐EC activity was detected at different stages of FL development, yet marginal activity was identified in the adult liver, revealing unknown functional differences between fetal and adult liver endothelial/endothelial progenitors. Importantly, the observations that expanding donor‐derived vascular grafts colocalize with proliferating hepatocyte‐like cells and participate in the systemic circulation, support their functional integration into young livers. These findings offer new insights into the engraftment, phonotypical, and developmental characterization of a novel endothelial/endothelial progenitor cell subtype with multiorgan LTR‐EC activity, potentially instrumental for the treatment/genetic correction of vascular diseases. Stem Cells 2017;35:507–521 |
format | Online Article Text |
id | pubmed-5298023 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-52980232017-02-22 Characterization of a Fetal Liver Cell Population Endowed with Long‐Term Multiorgan Endothelial Reconstitution Potential Cañete, Ana Comaills, Valentine Prados, Isabel Castro, Ana María Hammad, Seddik Ybot‐Gonzalez, Patricia Bockamp, Ernesto Hengstler, Jan G. Gottgens, Bertie Sánchez, María José Stem Cells Tissue‐Specific Stem Cells Stable reconstitution of vascular endothelial beds upon transplantation of progenitor cells represents an important challenge due to the paucity and generally limited integration/expansion potential of most identified vascular related cell subsets. We previously showed that mouse fetal liver (FL) hemato/vascular cells from day 12 of gestation (E12), expressing the Stem Cell Leukaemia (SCL) gene enhancer transgene (SCL‐PLAP(+) cells), had robust endothelial engraftment potential when transferred to the blood stream of newborns or adult conditioned recipients, compared to the scarce vascular contribution of adult bone marrow cells. However, the specific SCL‐PLAP(+) hematopoietic or endothelial cell subset responsible for the long‐term reconstituting endothelial cell (LTR‐EC) activity and its confinement to FL developmental stages remained unknown. Using a busulfan‐treated newborn transplantation model, we show that LTR‐EC activity is restricted to the SCL‐PLAP(+)VE‐cadherin(+)CD45(−) cell population, devoid of hematopoietic reconstitution activity and largely composed by Lyve1(+) endothelial‐committed cells. SCL‐PLAP(+) Ve‐cadherin(+)CD45(−) cells contributed to the liver sinusoidal endothelium and also to the heart, kidney and lung microvasculature. LTR‐EC activity was detected at different stages of FL development, yet marginal activity was identified in the adult liver, revealing unknown functional differences between fetal and adult liver endothelial/endothelial progenitors. Importantly, the observations that expanding donor‐derived vascular grafts colocalize with proliferating hepatocyte‐like cells and participate in the systemic circulation, support their functional integration into young livers. These findings offer new insights into the engraftment, phonotypical, and developmental characterization of a novel endothelial/endothelial progenitor cell subtype with multiorgan LTR‐EC activity, potentially instrumental for the treatment/genetic correction of vascular diseases. Stem Cells 2017;35:507–521 John Wiley and Sons Inc. 2016-09-28 2017-02 /pmc/articles/PMC5298023/ /pubmed/27615355 http://dx.doi.org/10.1002/stem.2494 Text en © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Tissue‐Specific Stem Cells Cañete, Ana Comaills, Valentine Prados, Isabel Castro, Ana María Hammad, Seddik Ybot‐Gonzalez, Patricia Bockamp, Ernesto Hengstler, Jan G. Gottgens, Bertie Sánchez, María José Characterization of a Fetal Liver Cell Population Endowed with Long‐Term Multiorgan Endothelial Reconstitution Potential |
title | Characterization of a Fetal Liver Cell Population Endowed with Long‐Term Multiorgan Endothelial Reconstitution Potential |
title_full | Characterization of a Fetal Liver Cell Population Endowed with Long‐Term Multiorgan Endothelial Reconstitution Potential |
title_fullStr | Characterization of a Fetal Liver Cell Population Endowed with Long‐Term Multiorgan Endothelial Reconstitution Potential |
title_full_unstemmed | Characterization of a Fetal Liver Cell Population Endowed with Long‐Term Multiorgan Endothelial Reconstitution Potential |
title_short | Characterization of a Fetal Liver Cell Population Endowed with Long‐Term Multiorgan Endothelial Reconstitution Potential |
title_sort | characterization of a fetal liver cell population endowed with long‐term multiorgan endothelial reconstitution potential |
topic | Tissue‐Specific Stem Cells |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5298023/ https://www.ncbi.nlm.nih.gov/pubmed/27615355 http://dx.doi.org/10.1002/stem.2494 |
work_keys_str_mv | AT caneteana characterizationofafetallivercellpopulationendowedwithlongtermmultiorganendothelialreconstitutionpotential AT comaillsvalentine characterizationofafetallivercellpopulationendowedwithlongtermmultiorganendothelialreconstitutionpotential AT pradosisabel characterizationofafetallivercellpopulationendowedwithlongtermmultiorganendothelialreconstitutionpotential AT castroanamaria characterizationofafetallivercellpopulationendowedwithlongtermmultiorganendothelialreconstitutionpotential AT hammadseddik characterizationofafetallivercellpopulationendowedwithlongtermmultiorganendothelialreconstitutionpotential AT ybotgonzalezpatricia characterizationofafetallivercellpopulationendowedwithlongtermmultiorganendothelialreconstitutionpotential AT bockampernesto characterizationofafetallivercellpopulationendowedwithlongtermmultiorganendothelialreconstitutionpotential AT hengstlerjang characterizationofafetallivercellpopulationendowedwithlongtermmultiorganendothelialreconstitutionpotential AT gottgensbertie characterizationofafetallivercellpopulationendowedwithlongtermmultiorganendothelialreconstitutionpotential AT sanchezmariajose characterizationofafetallivercellpopulationendowedwithlongtermmultiorganendothelialreconstitutionpotential |