Cargando…
Accuracy Maximization Analysis for Sensory-Perceptual Tasks: Computational Improvements, Filter Robustness, and Coding Advantages for Scaled Additive Noise
Accuracy Maximization Analysis (AMA) is a recently developed Bayesian ideal observer method for task-specific dimensionality reduction. Given a training set of proximal stimuli (e.g. retinal images), a response noise model, and a cost function, AMA returns the filters (i.e. receptive fields) that ex...
Autores principales: | Burge, Johannes, Jaini, Priyank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5298250/ https://www.ncbi.nlm.nih.gov/pubmed/28178266 http://dx.doi.org/10.1371/journal.pcbi.1005281 |
Ejemplares similares
-
Correction: Accuracy Maximization Analysis for Sensory-Perceptual Tasks: Computational Improvements, Filter Robustness, and Coding Advantages for Scaled Additive Noise
Publicado: (2017) -
Linking normative models of natural tasks to descriptive models of neural response
por: Jaini, Priyank, et al.
Publicado: (2017) -
Sensory coding accuracy and perceptual performance are improved during the desynchronized cortical state
por: Beaman, Charles B., et al.
Publicado: (2017) -
Differential effects of white noise in cognitive and perceptual tasks
por: Herweg, Nora A., et al.
Publicado: (2015) -
Training augmentation using additive sensory noise in a lunar rover navigation task
por: Sherman, Sage O., et al.
Publicado: (2023)