Cargando…

Cross View Gait Recognition Using Joint-Direct Linear Discriminant Analysis

This paper proposes a view-invariant gait recognition framework that employs a unique view invariant model that profits from the dimensionality reduction provided by Direct Linear Discriminant Analysis (DLDA). The framework, which employs gait energy images (GEIs), creates a single joint model that...

Descripción completa

Detalles Bibliográficos
Autores principales: Portillo-Portillo, Jose, Leyva, Roberto, Sanchez, Victor, Sanchez-Perez, Gabriel, Perez-Meana, Hector, Olivares-Mercado, Jesus, Toscano-Medina, Karina, Nakano-Miyatake, Mariko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5298579/
https://www.ncbi.nlm.nih.gov/pubmed/28025484
http://dx.doi.org/10.3390/s17010006
_version_ 1782505886153965568
author Portillo-Portillo, Jose
Leyva, Roberto
Sanchez, Victor
Sanchez-Perez, Gabriel
Perez-Meana, Hector
Olivares-Mercado, Jesus
Toscano-Medina, Karina
Nakano-Miyatake, Mariko
author_facet Portillo-Portillo, Jose
Leyva, Roberto
Sanchez, Victor
Sanchez-Perez, Gabriel
Perez-Meana, Hector
Olivares-Mercado, Jesus
Toscano-Medina, Karina
Nakano-Miyatake, Mariko
author_sort Portillo-Portillo, Jose
collection PubMed
description This paper proposes a view-invariant gait recognition framework that employs a unique view invariant model that profits from the dimensionality reduction provided by Direct Linear Discriminant Analysis (DLDA). The framework, which employs gait energy images (GEIs), creates a single joint model that accurately classifies GEIs captured at different angles. Moreover, the proposed framework also helps to reduce the under-sampling problem (USP) that usually appears when the number of training samples is much smaller than the dimension of the feature space. Evaluation experiments compare the proposed framework’s computational complexity and recognition accuracy against those of other view-invariant methods. Results show improvements in both computational complexity and recognition accuracy.
format Online
Article
Text
id pubmed-5298579
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-52985792017-02-10 Cross View Gait Recognition Using Joint-Direct Linear Discriminant Analysis Portillo-Portillo, Jose Leyva, Roberto Sanchez, Victor Sanchez-Perez, Gabriel Perez-Meana, Hector Olivares-Mercado, Jesus Toscano-Medina, Karina Nakano-Miyatake, Mariko Sensors (Basel) Article This paper proposes a view-invariant gait recognition framework that employs a unique view invariant model that profits from the dimensionality reduction provided by Direct Linear Discriminant Analysis (DLDA). The framework, which employs gait energy images (GEIs), creates a single joint model that accurately classifies GEIs captured at different angles. Moreover, the proposed framework also helps to reduce the under-sampling problem (USP) that usually appears when the number of training samples is much smaller than the dimension of the feature space. Evaluation experiments compare the proposed framework’s computational complexity and recognition accuracy against those of other view-invariant methods. Results show improvements in both computational complexity and recognition accuracy. MDPI 2016-12-22 /pmc/articles/PMC5298579/ /pubmed/28025484 http://dx.doi.org/10.3390/s17010006 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Portillo-Portillo, Jose
Leyva, Roberto
Sanchez, Victor
Sanchez-Perez, Gabriel
Perez-Meana, Hector
Olivares-Mercado, Jesus
Toscano-Medina, Karina
Nakano-Miyatake, Mariko
Cross View Gait Recognition Using Joint-Direct Linear Discriminant Analysis
title Cross View Gait Recognition Using Joint-Direct Linear Discriminant Analysis
title_full Cross View Gait Recognition Using Joint-Direct Linear Discriminant Analysis
title_fullStr Cross View Gait Recognition Using Joint-Direct Linear Discriminant Analysis
title_full_unstemmed Cross View Gait Recognition Using Joint-Direct Linear Discriminant Analysis
title_short Cross View Gait Recognition Using Joint-Direct Linear Discriminant Analysis
title_sort cross view gait recognition using joint-direct linear discriminant analysis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5298579/
https://www.ncbi.nlm.nih.gov/pubmed/28025484
http://dx.doi.org/10.3390/s17010006
work_keys_str_mv AT portilloportillojose crossviewgaitrecognitionusingjointdirectlineardiscriminantanalysis
AT leyvaroberto crossviewgaitrecognitionusingjointdirectlineardiscriminantanalysis
AT sanchezvictor crossviewgaitrecognitionusingjointdirectlineardiscriminantanalysis
AT sanchezperezgabriel crossviewgaitrecognitionusingjointdirectlineardiscriminantanalysis
AT perezmeanahector crossviewgaitrecognitionusingjointdirectlineardiscriminantanalysis
AT olivaresmercadojesus crossviewgaitrecognitionusingjointdirectlineardiscriminantanalysis
AT toscanomedinakarina crossviewgaitrecognitionusingjointdirectlineardiscriminantanalysis
AT nakanomiyatakemariko crossviewgaitrecognitionusingjointdirectlineardiscriminantanalysis