Cargando…
Feasibility Test of a Liquid Film Thickness Sensor on a Flexible Printed Circuit Board Using a Three-Electrode Conductance Method
Liquid film thickness measurements under temperature-varying conditions in a two-phase flow are of great importance to refining our understanding of two-phase flows. In order to overcome the limitations of the conventional electrical means of measuring the thickness of a liquid film, this study prop...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5298615/ https://www.ncbi.nlm.nih.gov/pubmed/28036000 http://dx.doi.org/10.3390/s17010042 |
Sumario: | Liquid film thickness measurements under temperature-varying conditions in a two-phase flow are of great importance to refining our understanding of two-phase flows. In order to overcome the limitations of the conventional electrical means of measuring the thickness of a liquid film, this study proposes a three-electrode conductance method, with the device fabricated on a flexible printed circuit board (FPCB). The three-electrode conductance method offers the advantage of applicability under conditions with varying temperatures in principle, while the FPCB has the advantage of usability on curved surfaces and in relatively high-temperature conditions in comparison with sensors based on a printed circuit board (PCB). Two types of prototype sensors were fabricated on an FPCB and the feasibility of both was confirmed in a calibration test conducted at different temperatures. With the calibrated sensor, liquid film thickness measurements were conducted via a falling liquid film flow experiment, and the working performance was tested. |
---|