Cargando…
Design of a Mobile Low-Cost Sensor Network Using Urban Buses for Real-Time Ubiquitous Noise Monitoring
One of the main priorities of smart cities is improving the quality of life of their inhabitants. Traffic noise is one of the pollutant sources that causes a negative impact on the quality of life of citizens, which is gaining attention among authorities. The European Commission has promoted the Env...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5298630/ https://www.ncbi.nlm.nih.gov/pubmed/28036065 http://dx.doi.org/10.3390/s17010057 |
Sumario: | One of the main priorities of smart cities is improving the quality of life of their inhabitants. Traffic noise is one of the pollutant sources that causes a negative impact on the quality of life of citizens, which is gaining attention among authorities. The European Commission has promoted the Environmental Noise Directive 2002/49/EC (END) to inform citizens and to prevent the harmful effects of noise exposure. The measure of acoustic levels using noise maps is a strategic issue in the END action plan. Noise maps are typically calculated by computing the average noise during one year and updated every five years. Hence, the implementation of dynamic noise mapping systems could lead to short-term plan actions, besides helping to better understand the evolution of noise levels along time. Recently, some projects have started the monitoring of noise levels in urban areas by means of acoustic sensor networks settled in strategic locations across the city, while others have taken advantage of collaborative citizen sensing mobile applications. In this paper, we describe the design of an acoustic low-cost sensor network installed on public buses to measure the traffic noise in the city in real time. Moreover, the challenges that a ubiquitous bus acoustic measurement system entails are enumerated and discussed. Specifically, the analysis takes into account the feature extraction of the audio signal, the identification and separation of the road traffic noise from urban traffic noise, the hardware platform to measure and process the acoustic signal, the connectivity between the several nodes of the acoustic sensor network to store the data and, finally, the noise maps’ generation process. The implementation and evaluation of the proposal in a real-life scenario is left for future work. |
---|