Cargando…
Performance Evaluation of Machine Learning Methods for Leaf Area Index Retrieval from Time-Series MODIS Reflectance Data
Leaf area index (LAI) is an important biophysical parameter and the retrieval of LAI from remote sensing data is the only feasible method for generating LAI products at regional and global scales. However, most LAI retrieval methods use satellite observations at a specific time to retrieve LAI. Beca...
Autores principales: | Wang, Tongtong, Xiao, Zhiqiang, Liu, Zhigang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5298654/ https://www.ncbi.nlm.nih.gov/pubmed/28045443 http://dx.doi.org/10.3390/s17010081 |
Ejemplares similares
-
Time-series MODIS Image-based Retrieval and Distribution Analysis of Total Suspended Matter Concentrations in Lake Taihu (China)
por: Zhang, Yuchao, et al.
Publicado: (2010) -
Evaluation and Intercomparison of MODIS and GEOV1 Global Leaf Area Index Products over Four Sites in North China
por: Li, Zhenwang, et al.
Publicado: (2015) -
Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors
por: Zheng, Guang, et al.
Publicado: (2009) -
MODIS Retrieval of Aerosol Optical Depth over Turbid Coastal Water
por: Wang, Yi, et al.
Publicado: (2017) -
Multifractal Analysis of MODIS Aqua and Terra Satellite Time Series of Normalized Difference Vegetation Index and Enhanced Vegetation Index of Sites Affected by Wildfires
por: Ba, Rui, et al.
Publicado: (2022)