Cargando…
Pruning-Based Sparse Recovery for Electrocardiogram Reconstruction from Compressed Measurements
Due to the necessity of the low-power implementation of newly-developed electrocardiogram (ECG) sensors, exact ECG data reconstruction from the compressed measurements has received much attention in recent years. Our interest lies in improving the compression ratio (CR), as well as the ECG reconstru...
Autores principales: | Lee, Jaeseok, Kim, Kyungsoo, Choi, Ji-Woong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5298678/ https://www.ncbi.nlm.nih.gov/pubmed/28067856 http://dx.doi.org/10.3390/s17010105 |
Ejemplares similares
-
MobilePrune: Neural Network Compression via ℓ(0) Sparse Group Lasso on the Mobile System
por: Shao, Yubo, et al.
Publicado: (2022) -
Coarse-Grained Pruning of Neural Network Models Based on Blocky Sparse Structure
por: Huang, Lan, et al.
Publicado: (2021) -
Auxiliary Pneumonia Classification Algorithm Based on Pruning Compression
por: Yang, Chao-Peng, et al.
Publicado: (2022) -
Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain–computer interface: three-class classification of rest, right-, and left-hand motor execution
por: Trakoolwilaiwan, Thanawin, et al.
Publicado: (2017) -
A Bat-Inspired Sparse Recovery Algorithm for Compressed Sensing
por: Bao, Wanning, et al.
Publicado: (2018)