Cargando…
Visual Object Tracking Based on Cross-Modality Gaussian-Bernoulli Deep Boltzmann Machines with RGB-D Sensors
Visual object tracking technology is one of the key issues in computer vision. In this paper, we propose a visual object tracking algorithm based on cross-modality featuredeep learning using Gaussian-Bernoulli deep Boltzmann machines (DBM) with RGB-D sensors. First, a cross-modality featurelearning...
Autores principales: | Jiang, Mingxin, Pan, Zhigeng, Tang, Zhenzhou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5298694/ https://www.ncbi.nlm.nih.gov/pubmed/28075373 http://dx.doi.org/10.3390/s17010121 |
Ejemplares similares
-
Multi-Objective Optimization Based Multi-Bernoulli Sensor Selection for Multi-Target Tracking
por: Zhu, Yun, et al.
Publicado: (2019) -
Object Tracking in RGB-T Videos Using Modal-Aware Attention Network and Competitive Learning
por: Zhang, Hui, et al.
Publicado: (2020) -
Gaussian-binary restricted Boltzmann machines for modeling natural image statistics
por: Melchior, Jan, et al.
Publicado: (2017) -
Correction: Gaussian-binary restricted Boltzmann machines for modeling natural image statistics
por: Melchior, Jan, et al.
Publicado: (2017) -
Lapping Quality Prediction of Ceramic Fiber Brush Based on Gaussian-Restricted Boltzmann Machine
por: Yuan, Xiuhua, et al.
Publicado: (2022)