Cargando…
SisFall: A Fall and Movement Dataset
Research on fall and movement detection with wearable devices has witnessed promising growth. However, there are few publicly available datasets, all recorded with smartphones, which are insufficient for testing new proposals due to their absence of objective population, lack of performed activities...
Autores principales: | Sucerquia, Angela, López, José David, Vargas-Bonilla, Jesús Francisco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5298771/ https://www.ncbi.nlm.nih.gov/pubmed/28117691 http://dx.doi.org/10.3390/s17010198 |
Ejemplares similares
-
Real-Life/Real-Time Elderly Fall Detection with a Triaxial Accelerometer
por: Sucerquia, Angela, et al.
Publicado: (2018) -
Dataset for human fall recognition in an uncontrolled environment
por: Guerrero, José Camilo Eraso, et al.
Publicado: (2022) -
AnkFall—Falls, Falling Risks and Daily-Life Activities Dataset with an Ankle-Placed Accelerometer and Training Using Recurrent Neural Networks
por: Luna-Perejón, Francisco, et al.
Publicado: (2021) -
Validation of accuracy of SVM-based fall detection system using real-world fall and non-fall datasets
por: Aziz, Omar, et al.
Publicado: (2017) -
Analysis of Public Datasets for Wearable Fall Detection Systems
por: Casilari, Eduardo, et al.
Publicado: (2017)