Cargando…
Modeling the Dynamics of Human Brain Activity with Recurrent Neural Networks
Encoding models are used for predicting brain activity in response to sensory stimuli with the objective of elucidating how sensory information is represented in the brain. Encoding models typically comprise a nonlinear transformation of stimuli to features (feature model) and a linear convolution o...
Autores principales: | Güçlü, Umut, van Gerven, Marcel A. J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5299026/ https://www.ncbi.nlm.nih.gov/pubmed/28232797 http://dx.doi.org/10.3389/fncom.2017.00007 |
Ejemplares similares
-
Gaussian mixture models and semantic gating improve reconstructions from human brain activity
por: Schoenmakers, Sanne, et al.
Publicado: (2015) -
A partially nested cortical hierarchy of neural states underlies event segmentation in the human brain
por: Geerligs, Linda, et al.
Publicado: (2022) -
Brain2Pix: Fully convolutional naturalistic video frame reconstruction from brain activity
por: Le, Lynn, et al.
Publicado: (2022) -
Unsupervised Feature Learning Improves Prediction of Human Brain Activity in Response to Natural Images
por: Güçlü, Umut, et al.
Publicado: (2014) -
Editorial: Artificial Neural Networks as Models of Neural Information Processing
por: van Gerven, Marcel, et al.
Publicado: (2017)