Cargando…
Oligodendrocyte Progenitor Cells Directly Utilize Lactate for Promoting Cell Cycling and Differentiation
Oligodendrocyte progenitor cells (OPCs) undergo marked morphological changes to become mature oligodendrocytes, but the metabolic resources for this process have not been fully elucidated. Although lactate, a metabolic derivative of glycogen, has been reported to be consumed in oligodendrocytes as a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5299506/ https://www.ncbi.nlm.nih.gov/pubmed/27861886 http://dx.doi.org/10.1002/jcp.25690 |
_version_ | 1782506039665491968 |
---|---|
author | Ichihara, Yoshinori Doi, Toru Ryu, Youngjae Nagao, Motoshi Sawada, Yasuhiro Ogata, Toru |
author_facet | Ichihara, Yoshinori Doi, Toru Ryu, Youngjae Nagao, Motoshi Sawada, Yasuhiro Ogata, Toru |
author_sort | Ichihara, Yoshinori |
collection | PubMed |
description | Oligodendrocyte progenitor cells (OPCs) undergo marked morphological changes to become mature oligodendrocytes, but the metabolic resources for this process have not been fully elucidated. Although lactate, a metabolic derivative of glycogen, has been reported to be consumed in oligodendrocytes as a metabolite, and to ameliorate hypomyelination induced by low glucose conditions, it is not clear about the direct contribution of lactate to cell cycling and differentiation of OPCs, and the source of lactate for remyelination. Therefore, we evaluated the effect of 1,4‐dideoxy‐1,4‐imino‐d‐arabinitol (DAB), an inhibitor of the glycogen catabolic enzyme glycogen phosphorylase, in a mouse cuprizone model. Cuprizone induced demyelination in the corpus callosum and remyelination occurred after cuprizone treatment ceased. This remyelination was inhibited by the administration of DAB. To further examine whether lactate affects proliferation or differentiation of OPCs, we cultured mouse primary OPC‐rich cells and analyzed the effect of lactate. Lactate rescued the slowed cell cycling induced by 0.4 mM glucose, as assessed by the BrdU‐positive cell ratio. Lactate also promoted OPC differentiation detected by monitoring the mature oligodendrocyte marker myelin basic protein, in the presence of both 36.6 mM and 0.4 mM glucose. Furthermore, these lactate‐mediated effects were suppressed by the reported monocarboxylate transporter inhibitor, α‐cyano‐4‐hydroxy‐cinnamate. These results suggest that lactate directly promotes the cell cycling rate and differentiation of OPCs, and that glycogen, one of the sources of lactate, contributes to remyelination in vivo. J. Cell. Physiol. 232: 986–995, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. |
format | Online Article Text |
id | pubmed-5299506 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-52995062017-02-22 Oligodendrocyte Progenitor Cells Directly Utilize Lactate for Promoting Cell Cycling and Differentiation Ichihara, Yoshinori Doi, Toru Ryu, Youngjae Nagao, Motoshi Sawada, Yasuhiro Ogata, Toru J Cell Physiol Original Research Articles Oligodendrocyte progenitor cells (OPCs) undergo marked morphological changes to become mature oligodendrocytes, but the metabolic resources for this process have not been fully elucidated. Although lactate, a metabolic derivative of glycogen, has been reported to be consumed in oligodendrocytes as a metabolite, and to ameliorate hypomyelination induced by low glucose conditions, it is not clear about the direct contribution of lactate to cell cycling and differentiation of OPCs, and the source of lactate for remyelination. Therefore, we evaluated the effect of 1,4‐dideoxy‐1,4‐imino‐d‐arabinitol (DAB), an inhibitor of the glycogen catabolic enzyme glycogen phosphorylase, in a mouse cuprizone model. Cuprizone induced demyelination in the corpus callosum and remyelination occurred after cuprizone treatment ceased. This remyelination was inhibited by the administration of DAB. To further examine whether lactate affects proliferation or differentiation of OPCs, we cultured mouse primary OPC‐rich cells and analyzed the effect of lactate. Lactate rescued the slowed cell cycling induced by 0.4 mM glucose, as assessed by the BrdU‐positive cell ratio. Lactate also promoted OPC differentiation detected by monitoring the mature oligodendrocyte marker myelin basic protein, in the presence of both 36.6 mM and 0.4 mM glucose. Furthermore, these lactate‐mediated effects were suppressed by the reported monocarboxylate transporter inhibitor, α‐cyano‐4‐hydroxy‐cinnamate. These results suggest that lactate directly promotes the cell cycling rate and differentiation of OPCs, and that glycogen, one of the sources of lactate, contributes to remyelination in vivo. J. Cell. Physiol. 232: 986–995, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. John Wiley and Sons Inc. 2016-11-30 2017-05 /pmc/articles/PMC5299506/ /pubmed/27861886 http://dx.doi.org/10.1002/jcp.25690 Text en © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Research Articles Ichihara, Yoshinori Doi, Toru Ryu, Youngjae Nagao, Motoshi Sawada, Yasuhiro Ogata, Toru Oligodendrocyte Progenitor Cells Directly Utilize Lactate for Promoting Cell Cycling and Differentiation |
title | Oligodendrocyte Progenitor Cells Directly Utilize Lactate for Promoting Cell Cycling and Differentiation |
title_full | Oligodendrocyte Progenitor Cells Directly Utilize Lactate for Promoting Cell Cycling and Differentiation |
title_fullStr | Oligodendrocyte Progenitor Cells Directly Utilize Lactate for Promoting Cell Cycling and Differentiation |
title_full_unstemmed | Oligodendrocyte Progenitor Cells Directly Utilize Lactate for Promoting Cell Cycling and Differentiation |
title_short | Oligodendrocyte Progenitor Cells Directly Utilize Lactate for Promoting Cell Cycling and Differentiation |
title_sort | oligodendrocyte progenitor cells directly utilize lactate for promoting cell cycling and differentiation |
topic | Original Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5299506/ https://www.ncbi.nlm.nih.gov/pubmed/27861886 http://dx.doi.org/10.1002/jcp.25690 |
work_keys_str_mv | AT ichiharayoshinori oligodendrocyteprogenitorcellsdirectlyutilizelactateforpromotingcellcyclinganddifferentiation AT doitoru oligodendrocyteprogenitorcellsdirectlyutilizelactateforpromotingcellcyclinganddifferentiation AT ryuyoungjae oligodendrocyteprogenitorcellsdirectlyutilizelactateforpromotingcellcyclinganddifferentiation AT nagaomotoshi oligodendrocyteprogenitorcellsdirectlyutilizelactateforpromotingcellcyclinganddifferentiation AT sawadayasuhiro oligodendrocyteprogenitorcellsdirectlyutilizelactateforpromotingcellcyclinganddifferentiation AT ogatatoru oligodendrocyteprogenitorcellsdirectlyutilizelactateforpromotingcellcyclinganddifferentiation |