Cargando…
Molecular Fractionation of Dissolved Organic Matter in a Shallow Subterranean Estuary: The Role of the Iron Curtain
[Image: see text] Iron that precipitates under aerobic conditions in natural aquatic systems scavenges dissolved organic matter (DOM) from solution. Subterranean estuaries (STEs) are of major importance for land–ocean biogeochemical fluxes. Their specific redox boundaries, coined the “iron curtain”...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2016
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5299545/ https://www.ncbi.nlm.nih.gov/pubmed/27976873 http://dx.doi.org/10.1021/acs.est.6b03608 |
_version_ | 1782506046277812224 |
---|---|
author | Linkhorst, Annika Dittmar, Thorsten Waska, Hannelore |
author_facet | Linkhorst, Annika Dittmar, Thorsten Waska, Hannelore |
author_sort | Linkhorst, Annika |
collection | PubMed |
description | [Image: see text] Iron that precipitates under aerobic conditions in natural aquatic systems scavenges dissolved organic matter (DOM) from solution. Subterranean estuaries (STEs) are of major importance for land–ocean biogeochemical fluxes. Their specific redox boundaries, coined the “iron curtain” due to the abundance of precipitated iron(III) (oxy)hydroxides, are hot spots for the removal and redissolution of iron, associated nutrients, and DOM. We used ultra-high-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to molecularly characterize the iron-coagulating fractions of 32 groundwater and seawater DOM samples along a salinity gradient from a shallow STE on Spiekeroog Island, North Sea, Germany, and linked our findings to trace metal and nutrient concentrations. We found systematic iron coagulation of large (>450 Da), oxygen-rich, and highly aromatic DOM molecules of terrestrial origin. The extent of coagulation increased with growing terrestrial influence along the salinity gradient. Our study is the first to show that the iron curtain may be capable of retaining terrigenous DOM fractions in marine sediments. We hypothesize that the iron curtain serves as an inorganic modulator for the supply of DOM from groundwaters to the sea, and that the STE has the potential to act as a temporal storage or even sink for terrigenous aromatic DOM compounds. |
format | Online Article Text |
id | pubmed-5299545 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-52995452017-02-10 Molecular Fractionation of Dissolved Organic Matter in a Shallow Subterranean Estuary: The Role of the Iron Curtain Linkhorst, Annika Dittmar, Thorsten Waska, Hannelore Environ Sci Technol [Image: see text] Iron that precipitates under aerobic conditions in natural aquatic systems scavenges dissolved organic matter (DOM) from solution. Subterranean estuaries (STEs) are of major importance for land–ocean biogeochemical fluxes. Their specific redox boundaries, coined the “iron curtain” due to the abundance of precipitated iron(III) (oxy)hydroxides, are hot spots for the removal and redissolution of iron, associated nutrients, and DOM. We used ultra-high-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to molecularly characterize the iron-coagulating fractions of 32 groundwater and seawater DOM samples along a salinity gradient from a shallow STE on Spiekeroog Island, North Sea, Germany, and linked our findings to trace metal and nutrient concentrations. We found systematic iron coagulation of large (>450 Da), oxygen-rich, and highly aromatic DOM molecules of terrestrial origin. The extent of coagulation increased with growing terrestrial influence along the salinity gradient. Our study is the first to show that the iron curtain may be capable of retaining terrigenous DOM fractions in marine sediments. We hypothesize that the iron curtain serves as an inorganic modulator for the supply of DOM from groundwaters to the sea, and that the STE has the potential to act as a temporal storage or even sink for terrigenous aromatic DOM compounds. American Chemical Society 2016-12-15 2017-02-07 /pmc/articles/PMC5299545/ /pubmed/27976873 http://dx.doi.org/10.1021/acs.est.6b03608 Text en Copyright © 2016 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Linkhorst, Annika Dittmar, Thorsten Waska, Hannelore Molecular Fractionation of Dissolved Organic Matter in a Shallow Subterranean Estuary: The Role of the Iron Curtain |
title | Molecular
Fractionation of Dissolved Organic Matter
in a Shallow Subterranean Estuary: The Role of the Iron Curtain |
title_full | Molecular
Fractionation of Dissolved Organic Matter
in a Shallow Subterranean Estuary: The Role of the Iron Curtain |
title_fullStr | Molecular
Fractionation of Dissolved Organic Matter
in a Shallow Subterranean Estuary: The Role of the Iron Curtain |
title_full_unstemmed | Molecular
Fractionation of Dissolved Organic Matter
in a Shallow Subterranean Estuary: The Role of the Iron Curtain |
title_short | Molecular
Fractionation of Dissolved Organic Matter
in a Shallow Subterranean Estuary: The Role of the Iron Curtain |
title_sort | molecular
fractionation of dissolved organic matter
in a shallow subterranean estuary: the role of the iron curtain |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5299545/ https://www.ncbi.nlm.nih.gov/pubmed/27976873 http://dx.doi.org/10.1021/acs.est.6b03608 |
work_keys_str_mv | AT linkhorstannika molecularfractionationofdissolvedorganicmatterinashallowsubterraneanestuarytheroleoftheironcurtain AT dittmarthorsten molecularfractionationofdissolvedorganicmatterinashallowsubterraneanestuarytheroleoftheironcurtain AT waskahannelore molecularfractionationofdissolvedorganicmatterinashallowsubterraneanestuarytheroleoftheironcurtain |