Cargando…
Phototoxicity of Liposomal Zn- and Al-phthalocyanine Against Cervical and Oral Squamous Cell Carcinoma Cells In Vitro
BACKGROUND: Photodynamic therapy (PDT) utilizes light to activate a photosensitizer in the presence of oxygen, and leads to local photodamage by the generation of highly reactive oxygen species (ROS). Liposomal delivery of photosensitizers is adaptable to the treatment of cancers. We examined the ph...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5299971/ https://www.ncbi.nlm.nih.gov/pubmed/27932777 http://dx.doi.org/10.12659/MSMBR.901039 |
_version_ | 1782506111420596224 |
---|---|
author | Young, Jason Yee, Michael Kim, Hayoung Cheung, Jennifer Chino, Takahiro Düzgüneş, Nejat Konopka, Krystyna |
author_facet | Young, Jason Yee, Michael Kim, Hayoung Cheung, Jennifer Chino, Takahiro Düzgüneş, Nejat Konopka, Krystyna |
author_sort | Young, Jason |
collection | PubMed |
description | BACKGROUND: Photodynamic therapy (PDT) utilizes light to activate a photosensitizer in the presence of oxygen, and leads to local photodamage by the generation of highly reactive oxygen species (ROS). Liposomal delivery of photosensitizers is adaptable to the treatment of cancers. We examined the phototoxicity of free or liposome-embedded phthalocyanine photosensitizers using HeLa cervical carcinoma and HSC-3 oral squamous cell carcinoma cells. MATERIAL/METHODS: Liposomes were composed of palmitoyloleoyphosphatidylcholine (POPC): phosphatidylglycerol (PG), and contained either zinc phthalocyanine (ZnPc) or aluminum phthalocyanine chloride (AlPc). Free or liposomal ZnPc and AlPc were incubated with cells for 24 h at 37°C. Cells incubated with ZnPc were exposed to broadband visible light (350–800 nm; light dose 43.2 J/cm(2)), whereas cells treated with AlPc were exposed to light at 690 nm (light dose 3.6 J/cm(2)). The effect of folate receptor-targeted liposomal ZnPc was evaluated with HeLa cells. Cytotoxicity was analyzed by the Alamar Blue assay. RESULTS: Cell viability, expressed as a percentage of control cells, was calculated according to the formula [(A570–A600) of test cells]×100/[(A570–A600) of control cells]. The relative percentage changes then defined the phototoxic efficacy of the experimental conditions. In HeLa cells, 1 μM free ZnPc and AlPc, reduced cell viability to 52.7±2.1 and 15.4±8.0%, respectively. Liposomal phthalocyanines, at 0.1, 0.5, and 1.0 μM, reduced the viability to 68.0±8.6, 15.1±9.9 and 0% (ZnPc), and to 25.8±8.2, 0 and 0% (AlPc), respectively. In HSC-3 cells, 1 μM free ZnPc and AlPc, reduced cell viability to 22.1±2.8 and 56.6±8.6%, respectively. With 1 μM liposomal ZnPc and AlPc, the viability was reduced to 0 and 21.3±0.3%, respectively. CONCLUSIONS: The embedding of phthalocyanines in liposomes enhanced their phototoxicity and this effect was dependent on cell type. |
format | Online Article Text |
id | pubmed-5299971 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | International Scientific Literature, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-52999712017-02-16 Phototoxicity of Liposomal Zn- and Al-phthalocyanine Against Cervical and Oral Squamous Cell Carcinoma Cells In Vitro Young, Jason Yee, Michael Kim, Hayoung Cheung, Jennifer Chino, Takahiro Düzgüneş, Nejat Konopka, Krystyna Med Sci Monit Basic Res In Vitro Studies BACKGROUND: Photodynamic therapy (PDT) utilizes light to activate a photosensitizer in the presence of oxygen, and leads to local photodamage by the generation of highly reactive oxygen species (ROS). Liposomal delivery of photosensitizers is adaptable to the treatment of cancers. We examined the phototoxicity of free or liposome-embedded phthalocyanine photosensitizers using HeLa cervical carcinoma and HSC-3 oral squamous cell carcinoma cells. MATERIAL/METHODS: Liposomes were composed of palmitoyloleoyphosphatidylcholine (POPC): phosphatidylglycerol (PG), and contained either zinc phthalocyanine (ZnPc) or aluminum phthalocyanine chloride (AlPc). Free or liposomal ZnPc and AlPc were incubated with cells for 24 h at 37°C. Cells incubated with ZnPc were exposed to broadband visible light (350–800 nm; light dose 43.2 J/cm(2)), whereas cells treated with AlPc were exposed to light at 690 nm (light dose 3.6 J/cm(2)). The effect of folate receptor-targeted liposomal ZnPc was evaluated with HeLa cells. Cytotoxicity was analyzed by the Alamar Blue assay. RESULTS: Cell viability, expressed as a percentage of control cells, was calculated according to the formula [(A570–A600) of test cells]×100/[(A570–A600) of control cells]. The relative percentage changes then defined the phototoxic efficacy of the experimental conditions. In HeLa cells, 1 μM free ZnPc and AlPc, reduced cell viability to 52.7±2.1 and 15.4±8.0%, respectively. Liposomal phthalocyanines, at 0.1, 0.5, and 1.0 μM, reduced the viability to 68.0±8.6, 15.1±9.9 and 0% (ZnPc), and to 25.8±8.2, 0 and 0% (AlPc), respectively. In HSC-3 cells, 1 μM free ZnPc and AlPc, reduced cell viability to 22.1±2.8 and 56.6±8.6%, respectively. With 1 μM liposomal ZnPc and AlPc, the viability was reduced to 0 and 21.3±0.3%, respectively. CONCLUSIONS: The embedding of phthalocyanines in liposomes enhanced their phototoxicity and this effect was dependent on cell type. International Scientific Literature, Inc. 2016-12-09 /pmc/articles/PMC5299971/ /pubmed/27932777 http://dx.doi.org/10.12659/MSMBR.901039 Text en © Med Sci Monit, 2016 This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
spellingShingle | In Vitro Studies Young, Jason Yee, Michael Kim, Hayoung Cheung, Jennifer Chino, Takahiro Düzgüneş, Nejat Konopka, Krystyna Phototoxicity of Liposomal Zn- and Al-phthalocyanine Against Cervical and Oral Squamous Cell Carcinoma Cells In Vitro |
title | Phototoxicity of Liposomal Zn- and Al-phthalocyanine Against Cervical and Oral Squamous Cell Carcinoma Cells In Vitro |
title_full | Phototoxicity of Liposomal Zn- and Al-phthalocyanine Against Cervical and Oral Squamous Cell Carcinoma Cells In Vitro |
title_fullStr | Phototoxicity of Liposomal Zn- and Al-phthalocyanine Against Cervical and Oral Squamous Cell Carcinoma Cells In Vitro |
title_full_unstemmed | Phototoxicity of Liposomal Zn- and Al-phthalocyanine Against Cervical and Oral Squamous Cell Carcinoma Cells In Vitro |
title_short | Phototoxicity of Liposomal Zn- and Al-phthalocyanine Against Cervical and Oral Squamous Cell Carcinoma Cells In Vitro |
title_sort | phototoxicity of liposomal zn- and al-phthalocyanine against cervical and oral squamous cell carcinoma cells in vitro |
topic | In Vitro Studies |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5299971/ https://www.ncbi.nlm.nih.gov/pubmed/27932777 http://dx.doi.org/10.12659/MSMBR.901039 |
work_keys_str_mv | AT youngjason phototoxicityofliposomalznandalphthalocyanineagainstcervicalandoralsquamouscellcarcinomacellsinvitro AT yeemichael phototoxicityofliposomalznandalphthalocyanineagainstcervicalandoralsquamouscellcarcinomacellsinvitro AT kimhayoung phototoxicityofliposomalznandalphthalocyanineagainstcervicalandoralsquamouscellcarcinomacellsinvitro AT cheungjennifer phototoxicityofliposomalznandalphthalocyanineagainstcervicalandoralsquamouscellcarcinomacellsinvitro AT chinotakahiro phototoxicityofliposomalznandalphthalocyanineagainstcervicalandoralsquamouscellcarcinomacellsinvitro AT duzgunesnejat phototoxicityofliposomalznandalphthalocyanineagainstcervicalandoralsquamouscellcarcinomacellsinvitro AT konopkakrystyna phototoxicityofliposomalznandalphthalocyanineagainstcervicalandoralsquamouscellcarcinomacellsinvitro |