Cargando…

Phototoxicity of Liposomal Zn- and Al-phthalocyanine Against Cervical and Oral Squamous Cell Carcinoma Cells In Vitro

BACKGROUND: Photodynamic therapy (PDT) utilizes light to activate a photosensitizer in the presence of oxygen, and leads to local photodamage by the generation of highly reactive oxygen species (ROS). Liposomal delivery of photosensitizers is adaptable to the treatment of cancers. We examined the ph...

Descripción completa

Detalles Bibliográficos
Autores principales: Young, Jason, Yee, Michael, Kim, Hayoung, Cheung, Jennifer, Chino, Takahiro, Düzgüneş, Nejat, Konopka, Krystyna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5299971/
https://www.ncbi.nlm.nih.gov/pubmed/27932777
http://dx.doi.org/10.12659/MSMBR.901039
_version_ 1782506111420596224
author Young, Jason
Yee, Michael
Kim, Hayoung
Cheung, Jennifer
Chino, Takahiro
Düzgüneş, Nejat
Konopka, Krystyna
author_facet Young, Jason
Yee, Michael
Kim, Hayoung
Cheung, Jennifer
Chino, Takahiro
Düzgüneş, Nejat
Konopka, Krystyna
author_sort Young, Jason
collection PubMed
description BACKGROUND: Photodynamic therapy (PDT) utilizes light to activate a photosensitizer in the presence of oxygen, and leads to local photodamage by the generation of highly reactive oxygen species (ROS). Liposomal delivery of photosensitizers is adaptable to the treatment of cancers. We examined the phototoxicity of free or liposome-embedded phthalocyanine photosensitizers using HeLa cervical carcinoma and HSC-3 oral squamous cell carcinoma cells. MATERIAL/METHODS: Liposomes were composed of palmitoyloleoyphosphatidylcholine (POPC): phosphatidylglycerol (PG), and contained either zinc phthalocyanine (ZnPc) or aluminum phthalocyanine chloride (AlPc). Free or liposomal ZnPc and AlPc were incubated with cells for 24 h at 37°C. Cells incubated with ZnPc were exposed to broadband visible light (350–800 nm; light dose 43.2 J/cm(2)), whereas cells treated with AlPc were exposed to light at 690 nm (light dose 3.6 J/cm(2)). The effect of folate receptor-targeted liposomal ZnPc was evaluated with HeLa cells. Cytotoxicity was analyzed by the Alamar Blue assay. RESULTS: Cell viability, expressed as a percentage of control cells, was calculated according to the formula [(A570–A600) of test cells]×100/[(A570–A600) of control cells]. The relative percentage changes then defined the phototoxic efficacy of the experimental conditions. In HeLa cells, 1 μM free ZnPc and AlPc, reduced cell viability to 52.7±2.1 and 15.4±8.0%, respectively. Liposomal phthalocyanines, at 0.1, 0.5, and 1.0 μM, reduced the viability to 68.0±8.6, 15.1±9.9 and 0% (ZnPc), and to 25.8±8.2, 0 and 0% (AlPc), respectively. In HSC-3 cells, 1 μM free ZnPc and AlPc, reduced cell viability to 22.1±2.8 and 56.6±8.6%, respectively. With 1 μM liposomal ZnPc and AlPc, the viability was reduced to 0 and 21.3±0.3%, respectively. CONCLUSIONS: The embedding of phthalocyanines in liposomes enhanced their phototoxicity and this effect was dependent on cell type.
format Online
Article
Text
id pubmed-5299971
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher International Scientific Literature, Inc.
record_format MEDLINE/PubMed
spelling pubmed-52999712017-02-16 Phototoxicity of Liposomal Zn- and Al-phthalocyanine Against Cervical and Oral Squamous Cell Carcinoma Cells In Vitro Young, Jason Yee, Michael Kim, Hayoung Cheung, Jennifer Chino, Takahiro Düzgüneş, Nejat Konopka, Krystyna Med Sci Monit Basic Res In Vitro Studies BACKGROUND: Photodynamic therapy (PDT) utilizes light to activate a photosensitizer in the presence of oxygen, and leads to local photodamage by the generation of highly reactive oxygen species (ROS). Liposomal delivery of photosensitizers is adaptable to the treatment of cancers. We examined the phototoxicity of free or liposome-embedded phthalocyanine photosensitizers using HeLa cervical carcinoma and HSC-3 oral squamous cell carcinoma cells. MATERIAL/METHODS: Liposomes were composed of palmitoyloleoyphosphatidylcholine (POPC): phosphatidylglycerol (PG), and contained either zinc phthalocyanine (ZnPc) or aluminum phthalocyanine chloride (AlPc). Free or liposomal ZnPc and AlPc were incubated with cells for 24 h at 37°C. Cells incubated with ZnPc were exposed to broadband visible light (350–800 nm; light dose 43.2 J/cm(2)), whereas cells treated with AlPc were exposed to light at 690 nm (light dose 3.6 J/cm(2)). The effect of folate receptor-targeted liposomal ZnPc was evaluated with HeLa cells. Cytotoxicity was analyzed by the Alamar Blue assay. RESULTS: Cell viability, expressed as a percentage of control cells, was calculated according to the formula [(A570–A600) of test cells]×100/[(A570–A600) of control cells]. The relative percentage changes then defined the phototoxic efficacy of the experimental conditions. In HeLa cells, 1 μM free ZnPc and AlPc, reduced cell viability to 52.7±2.1 and 15.4±8.0%, respectively. Liposomal phthalocyanines, at 0.1, 0.5, and 1.0 μM, reduced the viability to 68.0±8.6, 15.1±9.9 and 0% (ZnPc), and to 25.8±8.2, 0 and 0% (AlPc), respectively. In HSC-3 cells, 1 μM free ZnPc and AlPc, reduced cell viability to 22.1±2.8 and 56.6±8.6%, respectively. With 1 μM liposomal ZnPc and AlPc, the viability was reduced to 0 and 21.3±0.3%, respectively. CONCLUSIONS: The embedding of phthalocyanines in liposomes enhanced their phototoxicity and this effect was dependent on cell type. International Scientific Literature, Inc. 2016-12-09 /pmc/articles/PMC5299971/ /pubmed/27932777 http://dx.doi.org/10.12659/MSMBR.901039 Text en © Med Sci Monit, 2016 This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
spellingShingle In Vitro Studies
Young, Jason
Yee, Michael
Kim, Hayoung
Cheung, Jennifer
Chino, Takahiro
Düzgüneş, Nejat
Konopka, Krystyna
Phototoxicity of Liposomal Zn- and Al-phthalocyanine Against Cervical and Oral Squamous Cell Carcinoma Cells In Vitro
title Phototoxicity of Liposomal Zn- and Al-phthalocyanine Against Cervical and Oral Squamous Cell Carcinoma Cells In Vitro
title_full Phototoxicity of Liposomal Zn- and Al-phthalocyanine Against Cervical and Oral Squamous Cell Carcinoma Cells In Vitro
title_fullStr Phototoxicity of Liposomal Zn- and Al-phthalocyanine Against Cervical and Oral Squamous Cell Carcinoma Cells In Vitro
title_full_unstemmed Phototoxicity of Liposomal Zn- and Al-phthalocyanine Against Cervical and Oral Squamous Cell Carcinoma Cells In Vitro
title_short Phototoxicity of Liposomal Zn- and Al-phthalocyanine Against Cervical and Oral Squamous Cell Carcinoma Cells In Vitro
title_sort phototoxicity of liposomal zn- and al-phthalocyanine against cervical and oral squamous cell carcinoma cells in vitro
topic In Vitro Studies
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5299971/
https://www.ncbi.nlm.nih.gov/pubmed/27932777
http://dx.doi.org/10.12659/MSMBR.901039
work_keys_str_mv AT youngjason phototoxicityofliposomalznandalphthalocyanineagainstcervicalandoralsquamouscellcarcinomacellsinvitro
AT yeemichael phototoxicityofliposomalznandalphthalocyanineagainstcervicalandoralsquamouscellcarcinomacellsinvitro
AT kimhayoung phototoxicityofliposomalznandalphthalocyanineagainstcervicalandoralsquamouscellcarcinomacellsinvitro
AT cheungjennifer phototoxicityofliposomalznandalphthalocyanineagainstcervicalandoralsquamouscellcarcinomacellsinvitro
AT chinotakahiro phototoxicityofliposomalznandalphthalocyanineagainstcervicalandoralsquamouscellcarcinomacellsinvitro
AT duzgunesnejat phototoxicityofliposomalznandalphthalocyanineagainstcervicalandoralsquamouscellcarcinomacellsinvitro
AT konopkakrystyna phototoxicityofliposomalznandalphthalocyanineagainstcervicalandoralsquamouscellcarcinomacellsinvitro