Cargando…
An efficient incremental learning mechanism for tracking concept drift in spam filtering
This research manages in-depth analysis on the knowledge about spams and expects to propose an efficient spam filtering method with the ability of adapting to the dynamic environment. We focus on the analysis of email’s header and apply decision tree data mining technique to look for the association...
Autores principales: | Sheu, Jyh-Jian, Chu, Ko-Tsung, Li, Nien-Feng, Lee, Cheng-Chi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5300145/ https://www.ncbi.nlm.nih.gov/pubmed/28182691 http://dx.doi.org/10.1371/journal.pone.0171518 |
Ejemplares similares
-
Machine Learning for Email: Spam Filtering and Priority Inbox
por: Conway, Drew, et al.
Publicado: (2011) -
Machine learning for email spam filtering: review, approaches and open research problems
por: Dada, Emmanuel Gbenga, et al.
Publicado: (2019) -
Spam Kings
por: McWilliams, Brian
Publicado: (2014) -
Stopping spam
por: Schwartz, Alan, et al.
Publicado: (1998) -
SpamAssassin
por: Schwartz, Alan
Publicado: (2004)