Cargando…
Stress indicator gene expression profiles, colony dynamics and tissue development of honey bees exposed to sub-lethal doses of imidacloprid in laboratory and field experiments
In this study, different context-dependent effects of imidacloprid exposure on the honey bee response were studied. Honey bees were exposed to different concentrations of imidacloprid during a time period of 40 days. Next to these variables, a laboratory-field comparison was conducted. The influence...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5300173/ https://www.ncbi.nlm.nih.gov/pubmed/28182641 http://dx.doi.org/10.1371/journal.pone.0171529 |
_version_ | 1782506139475247104 |
---|---|
author | De Smet, Lina Hatjina, Fani Ioannidis, Pavlos Hamamtzoglou, Anna Schoonvaere, Karel Francis, Frédéric Meeus, Ivan Smagghe, Guy de Graaf, Dirk C. |
author_facet | De Smet, Lina Hatjina, Fani Ioannidis, Pavlos Hamamtzoglou, Anna Schoonvaere, Karel Francis, Frédéric Meeus, Ivan Smagghe, Guy de Graaf, Dirk C. |
author_sort | De Smet, Lina |
collection | PubMed |
description | In this study, different context-dependent effects of imidacloprid exposure on the honey bee response were studied. Honey bees were exposed to different concentrations of imidacloprid during a time period of 40 days. Next to these variables, a laboratory-field comparison was conducted. The influence of the chronic exposure on gene expression levels was determined using an in-house developed microarray targeting different immunity-related and detoxification genes to determine stress-related gene expression changes. Increased levels of the detoxification genes encoding, CYP9Q3 and CYT P450, were detected in imidacloprid-exposed honey bees. The different context-dependent effects of imidacloprid exposure on honey bees were confirmed physiologically by decreased hypopharyngeal gland sizes. Honey bees exposed to imidacloprid in laboratory cages showed a general immunosuppression and no detoxification mechanisms were triggered significantly, while honey bees in-field showed a resilient response with an immune stimulation at later time points. However, the treated colonies had a brood and population decline tendency after the first brood cycle in the field. In conclusion, this study highlighted the different context-dependent effects of imidacloprid exposure on the honey bee response. These findings warn for possible pitfalls concerning the generalization of results based on specific experiments with short exposure times. The increased levels of CYT P450 and CYP9Q3 combined with an immune response reaction can be used as markers for bees which are exposed to pesticides in the field. |
format | Online Article Text |
id | pubmed-5300173 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-53001732017-02-28 Stress indicator gene expression profiles, colony dynamics and tissue development of honey bees exposed to sub-lethal doses of imidacloprid in laboratory and field experiments De Smet, Lina Hatjina, Fani Ioannidis, Pavlos Hamamtzoglou, Anna Schoonvaere, Karel Francis, Frédéric Meeus, Ivan Smagghe, Guy de Graaf, Dirk C. PLoS One Research Article In this study, different context-dependent effects of imidacloprid exposure on the honey bee response were studied. Honey bees were exposed to different concentrations of imidacloprid during a time period of 40 days. Next to these variables, a laboratory-field comparison was conducted. The influence of the chronic exposure on gene expression levels was determined using an in-house developed microarray targeting different immunity-related and detoxification genes to determine stress-related gene expression changes. Increased levels of the detoxification genes encoding, CYP9Q3 and CYT P450, were detected in imidacloprid-exposed honey bees. The different context-dependent effects of imidacloprid exposure on honey bees were confirmed physiologically by decreased hypopharyngeal gland sizes. Honey bees exposed to imidacloprid in laboratory cages showed a general immunosuppression and no detoxification mechanisms were triggered significantly, while honey bees in-field showed a resilient response with an immune stimulation at later time points. However, the treated colonies had a brood and population decline tendency after the first brood cycle in the field. In conclusion, this study highlighted the different context-dependent effects of imidacloprid exposure on the honey bee response. These findings warn for possible pitfalls concerning the generalization of results based on specific experiments with short exposure times. The increased levels of CYT P450 and CYP9Q3 combined with an immune response reaction can be used as markers for bees which are exposed to pesticides in the field. Public Library of Science 2017-02-09 /pmc/articles/PMC5300173/ /pubmed/28182641 http://dx.doi.org/10.1371/journal.pone.0171529 Text en © 2017 De Smet et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article De Smet, Lina Hatjina, Fani Ioannidis, Pavlos Hamamtzoglou, Anna Schoonvaere, Karel Francis, Frédéric Meeus, Ivan Smagghe, Guy de Graaf, Dirk C. Stress indicator gene expression profiles, colony dynamics and tissue development of honey bees exposed to sub-lethal doses of imidacloprid in laboratory and field experiments |
title | Stress indicator gene expression profiles, colony dynamics and tissue development of honey bees exposed to sub-lethal doses of imidacloprid in laboratory and field experiments |
title_full | Stress indicator gene expression profiles, colony dynamics and tissue development of honey bees exposed to sub-lethal doses of imidacloprid in laboratory and field experiments |
title_fullStr | Stress indicator gene expression profiles, colony dynamics and tissue development of honey bees exposed to sub-lethal doses of imidacloprid in laboratory and field experiments |
title_full_unstemmed | Stress indicator gene expression profiles, colony dynamics and tissue development of honey bees exposed to sub-lethal doses of imidacloprid in laboratory and field experiments |
title_short | Stress indicator gene expression profiles, colony dynamics and tissue development of honey bees exposed to sub-lethal doses of imidacloprid in laboratory and field experiments |
title_sort | stress indicator gene expression profiles, colony dynamics and tissue development of honey bees exposed to sub-lethal doses of imidacloprid in laboratory and field experiments |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5300173/ https://www.ncbi.nlm.nih.gov/pubmed/28182641 http://dx.doi.org/10.1371/journal.pone.0171529 |
work_keys_str_mv | AT desmetlina stressindicatorgeneexpressionprofilescolonydynamicsandtissuedevelopmentofhoneybeesexposedtosublethaldosesofimidaclopridinlaboratoryandfieldexperiments AT hatjinafani stressindicatorgeneexpressionprofilescolonydynamicsandtissuedevelopmentofhoneybeesexposedtosublethaldosesofimidaclopridinlaboratoryandfieldexperiments AT ioannidispavlos stressindicatorgeneexpressionprofilescolonydynamicsandtissuedevelopmentofhoneybeesexposedtosublethaldosesofimidaclopridinlaboratoryandfieldexperiments AT hamamtzoglouanna stressindicatorgeneexpressionprofilescolonydynamicsandtissuedevelopmentofhoneybeesexposedtosublethaldosesofimidaclopridinlaboratoryandfieldexperiments AT schoonvaerekarel stressindicatorgeneexpressionprofilescolonydynamicsandtissuedevelopmentofhoneybeesexposedtosublethaldosesofimidaclopridinlaboratoryandfieldexperiments AT francisfrederic stressindicatorgeneexpressionprofilescolonydynamicsandtissuedevelopmentofhoneybeesexposedtosublethaldosesofimidaclopridinlaboratoryandfieldexperiments AT meeusivan stressindicatorgeneexpressionprofilescolonydynamicsandtissuedevelopmentofhoneybeesexposedtosublethaldosesofimidaclopridinlaboratoryandfieldexperiments AT smaggheguy stressindicatorgeneexpressionprofilescolonydynamicsandtissuedevelopmentofhoneybeesexposedtosublethaldosesofimidaclopridinlaboratoryandfieldexperiments AT degraafdirkc stressindicatorgeneexpressionprofilescolonydynamicsandtissuedevelopmentofhoneybeesexposedtosublethaldosesofimidaclopridinlaboratoryandfieldexperiments |