Cargando…

Combinatorial algorithm for counting small induced graphs and orbits

Graphlet analysis is an approach to network analysis that is particularly popular in bioinformatics. We show how to set up a system of linear equations that relate the orbit counts and can be used in an algorithm that is significantly faster than the existing approaches based on direct enumeration o...

Descripción completa

Detalles Bibliográficos
Autores principales: Hočevar, Tomaž, Demšar, Janez
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5300269/
https://www.ncbi.nlm.nih.gov/pubmed/28182743
http://dx.doi.org/10.1371/journal.pone.0171428
Descripción
Sumario:Graphlet analysis is an approach to network analysis that is particularly popular in bioinformatics. We show how to set up a system of linear equations that relate the orbit counts and can be used in an algorithm that is significantly faster than the existing approaches based on direct enumeration of graphlets. The approach presented in this paper presents a generalization of the currently fastest method for counting 5-node graphlets in bioinformatics. The algorithm requires existence of a vertex with certain properties; we show that such vertex exists for graphlets of arbitrary size, except for complete graphs and a cycle with four nodes, which are treated separately. Empirical analysis of running time agrees with the theoretical results.