Cargando…

THE REAL McCOIL: A method for the concurrent estimation of the complexity of infection and SNP allele frequency for malaria parasites

As many malaria-endemic countries move towards elimination of Plasmodium falciparum, the most virulent human malaria parasite, effective tools for monitoring malaria epidemiology are urgent priorities. P. falciparum population genetic approaches offer promising tools for understanding transmission a...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Hsiao-Han, Worby, Colin J., Yeka, Adoke, Nankabirwa, Joaniter, Kamya, Moses R., Staedke, Sarah G., Dorsey, Grant, Murphy, Maxwell, Neafsey, Daniel E., Jeffreys, Anna E., Hubbart, Christina, Rockett, Kirk A., Amato, Roberto, Kwiatkowski, Dominic P., Buckee, Caroline O., Greenhouse, Bryan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5300274/
https://www.ncbi.nlm.nih.gov/pubmed/28125584
http://dx.doi.org/10.1371/journal.pcbi.1005348
_version_ 1782506161060184064
author Chang, Hsiao-Han
Worby, Colin J.
Yeka, Adoke
Nankabirwa, Joaniter
Kamya, Moses R.
Staedke, Sarah G.
Dorsey, Grant
Murphy, Maxwell
Neafsey, Daniel E.
Jeffreys, Anna E.
Hubbart, Christina
Rockett, Kirk A.
Amato, Roberto
Kwiatkowski, Dominic P.
Buckee, Caroline O.
Greenhouse, Bryan
author_facet Chang, Hsiao-Han
Worby, Colin J.
Yeka, Adoke
Nankabirwa, Joaniter
Kamya, Moses R.
Staedke, Sarah G.
Dorsey, Grant
Murphy, Maxwell
Neafsey, Daniel E.
Jeffreys, Anna E.
Hubbart, Christina
Rockett, Kirk A.
Amato, Roberto
Kwiatkowski, Dominic P.
Buckee, Caroline O.
Greenhouse, Bryan
author_sort Chang, Hsiao-Han
collection PubMed
description As many malaria-endemic countries move towards elimination of Plasmodium falciparum, the most virulent human malaria parasite, effective tools for monitoring malaria epidemiology are urgent priorities. P. falciparum population genetic approaches offer promising tools for understanding transmission and spread of the disease, but a high prevalence of multi-clone or polygenomic infections can render estimation of even the most basic parameters, such as allele frequencies, challenging. A previous method, COIL, was developed to estimate complexity of infection (COI) from single nucleotide polymorphism (SNP) data, but relies on monogenomic infections to estimate allele frequencies or requires external allele frequency data which may not available. Estimates limited to monogenomic infections may not be representative, however, and when the average COI is high, they can be difficult or impossible to obtain. Therefore, we developed THE REAL McCOIL, Turning HEterozygous SNP data into Robust Estimates of ALelle frequency, via Markov chain Monte Carlo, and Complexity Of Infection using Likelihood, to incorporate polygenomic samples and simultaneously estimate allele frequency and COI. This approach was tested via simulations then applied to SNP data from cross-sectional surveys performed in three Ugandan sites with varying malaria transmission. We show that THE REAL McCOIL consistently outperforms COIL on simulated data, particularly when most infections are polygenomic. Using field data we show that, unlike with COIL, we can distinguish epidemiologically relevant differences in COI between and within these sites. Surprisingly, for example, we estimated high average COI in a peri-urban subregion with lower transmission intensity, suggesting that many of these cases were imported from surrounding regions with higher transmission intensity. THE REAL McCOIL therefore provides a robust tool for understanding the molecular epidemiology of malaria across transmission settings.
format Online
Article
Text
id pubmed-5300274
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-53002742017-03-03 THE REAL McCOIL: A method for the concurrent estimation of the complexity of infection and SNP allele frequency for malaria parasites Chang, Hsiao-Han Worby, Colin J. Yeka, Adoke Nankabirwa, Joaniter Kamya, Moses R. Staedke, Sarah G. Dorsey, Grant Murphy, Maxwell Neafsey, Daniel E. Jeffreys, Anna E. Hubbart, Christina Rockett, Kirk A. Amato, Roberto Kwiatkowski, Dominic P. Buckee, Caroline O. Greenhouse, Bryan PLoS Comput Biol Research Article As many malaria-endemic countries move towards elimination of Plasmodium falciparum, the most virulent human malaria parasite, effective tools for monitoring malaria epidemiology are urgent priorities. P. falciparum population genetic approaches offer promising tools for understanding transmission and spread of the disease, but a high prevalence of multi-clone or polygenomic infections can render estimation of even the most basic parameters, such as allele frequencies, challenging. A previous method, COIL, was developed to estimate complexity of infection (COI) from single nucleotide polymorphism (SNP) data, but relies on monogenomic infections to estimate allele frequencies or requires external allele frequency data which may not available. Estimates limited to monogenomic infections may not be representative, however, and when the average COI is high, they can be difficult or impossible to obtain. Therefore, we developed THE REAL McCOIL, Turning HEterozygous SNP data into Robust Estimates of ALelle frequency, via Markov chain Monte Carlo, and Complexity Of Infection using Likelihood, to incorporate polygenomic samples and simultaneously estimate allele frequency and COI. This approach was tested via simulations then applied to SNP data from cross-sectional surveys performed in three Ugandan sites with varying malaria transmission. We show that THE REAL McCOIL consistently outperforms COIL on simulated data, particularly when most infections are polygenomic. Using field data we show that, unlike with COIL, we can distinguish epidemiologically relevant differences in COI between and within these sites. Surprisingly, for example, we estimated high average COI in a peri-urban subregion with lower transmission intensity, suggesting that many of these cases were imported from surrounding regions with higher transmission intensity. THE REAL McCOIL therefore provides a robust tool for understanding the molecular epidemiology of malaria across transmission settings. Public Library of Science 2017-01-26 /pmc/articles/PMC5300274/ /pubmed/28125584 http://dx.doi.org/10.1371/journal.pcbi.1005348 Text en © 2017 Chang et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Chang, Hsiao-Han
Worby, Colin J.
Yeka, Adoke
Nankabirwa, Joaniter
Kamya, Moses R.
Staedke, Sarah G.
Dorsey, Grant
Murphy, Maxwell
Neafsey, Daniel E.
Jeffreys, Anna E.
Hubbart, Christina
Rockett, Kirk A.
Amato, Roberto
Kwiatkowski, Dominic P.
Buckee, Caroline O.
Greenhouse, Bryan
THE REAL McCOIL: A method for the concurrent estimation of the complexity of infection and SNP allele frequency for malaria parasites
title THE REAL McCOIL: A method for the concurrent estimation of the complexity of infection and SNP allele frequency for malaria parasites
title_full THE REAL McCOIL: A method for the concurrent estimation of the complexity of infection and SNP allele frequency for malaria parasites
title_fullStr THE REAL McCOIL: A method for the concurrent estimation of the complexity of infection and SNP allele frequency for malaria parasites
title_full_unstemmed THE REAL McCOIL: A method for the concurrent estimation of the complexity of infection and SNP allele frequency for malaria parasites
title_short THE REAL McCOIL: A method for the concurrent estimation of the complexity of infection and SNP allele frequency for malaria parasites
title_sort real mccoil: a method for the concurrent estimation of the complexity of infection and snp allele frequency for malaria parasites
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5300274/
https://www.ncbi.nlm.nih.gov/pubmed/28125584
http://dx.doi.org/10.1371/journal.pcbi.1005348
work_keys_str_mv AT changhsiaohan therealmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT worbycolinj therealmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT yekaadoke therealmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT nankabirwajoaniter therealmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT kamyamosesr therealmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT staedkesarahg therealmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT dorseygrant therealmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT murphymaxwell therealmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT neafseydaniele therealmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT jeffreysannae therealmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT hubbartchristina therealmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT rockettkirka therealmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT amatoroberto therealmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT kwiatkowskidominicp therealmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT buckeecarolineo therealmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT greenhousebryan therealmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT changhsiaohan realmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT worbycolinj realmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT yekaadoke realmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT nankabirwajoaniter realmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT kamyamosesr realmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT staedkesarahg realmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT dorseygrant realmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT murphymaxwell realmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT neafseydaniele realmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT jeffreysannae realmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT hubbartchristina realmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT rockettkirka realmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT amatoroberto realmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT kwiatkowskidominicp realmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT buckeecarolineo realmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites
AT greenhousebryan realmccoilamethodfortheconcurrentestimationofthecomplexityofinfectionandsnpallelefrequencyformalariaparasites