Cargando…

Beyond simple charts: Design of visualizations for big health data

Health data is often big data due to its high volume, low veracity, great variety, and high velocity. Big health data has the potential to improve productivity, eliminate waste, and support a broad range of tasks related to disease surveillance, patient care, research, and population health manageme...

Descripción completa

Detalles Bibliográficos
Autores principales: Ola, Oluwakemi, Sedig, Kamran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: University of Illinois at Chicago Library 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302463/
https://www.ncbi.nlm.nih.gov/pubmed/28210416
http://dx.doi.org/10.5210/ojphi.v8i3.7100
Descripción
Sumario:Health data is often big data due to its high volume, low veracity, great variety, and high velocity. Big health data has the potential to improve productivity, eliminate waste, and support a broad range of tasks related to disease surveillance, patient care, research, and population health management. Interactive visualizations have the potential to amplify big data’s utilization. Visualizations can be used to support a variety of tasks, such as tracking the geographic distribution of diseases, analyzing the prevalence of disease, triaging medical records, predicting outbreaks, and discovering at-risk populations. Currently, many health visualization tools use simple charts, such as bar charts and scatter plots, that only represent few facets of data. These tools, while beneficial for simple perceptual and cognitive tasks, are ineffective when dealing with more complex sensemaking tasks that involve exploration of various facets and elements of big data simultaneously. There is need for sophisticated and elaborate visualizations that encode many facets of data and support human-data interaction with big data and more complex tasks. When not approached systematically, design of such visualizations is labor-intensive, and the resulting designs may not facilitate big-data-driven tasks. Conceptual frameworks that guide the design of visualizations for big data can make the design process more manageable and result in more effective visualizations. In this paper, we demonstrate how a framework-based approach can help designers create novel, elaborate, non-trivial visualizations for big health data. We present four visualizations that are components of a larger tool for making sense of large-scale public health data.