Cargando…
Twitter Influenza Surveillance: Quantifying Seasonal Misdiagnosis Patterns and their Impact on Surveillance Estimates
BACKGROUND: Influenza (flu) surveillance using Twitter data can potentially save lives and increase efficiency by providing governments and healthcare organizations with greater situational awareness. However, research is needed to determine the impact of Twitter users’ misdiagnoses on surveillance...
Autor principal: | Mowery, Jared |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
University of Illinois at Chicago Library
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302465/ https://www.ncbi.nlm.nih.gov/pubmed/28210419 http://dx.doi.org/10.5210/ojphi.v8i3.7011 |
Ejemplares similares
-
Enhancing Seasonal Influenza Surveillance: Topic Analysis of Widely Used Medicinal Drugs Using Twitter Data
por: Kagashe, Ireneus, et al.
Publicado: (2017) -
National and Local Influenza Surveillance through Twitter: An Analysis of the 2012-2013 Influenza Epidemic
por: Broniatowski, David A., et al.
Publicado: (2013) -
Applying GIS and Machine Learning Methods to Twitter Data for Multiscale Surveillance of Influenza
por: Allen, Chris, et al.
Publicado: (2016) -
Influenza-Like Illness Surveillance on Twitter through Automated Learning of Naïve Language
por: Gesualdo, Francesco, et al.
Publicado: (2013) -
Seasonal and Pandemic Influenza Surveillance and Disease Severity
por: Feldblyum, Tamara V., et al.
Publicado: (2015)