Cargando…
Application of L-Aspartic Acid-Capped ZnS:Mn Colloidal Nanocrystals as a Photosensor for the Detection of Copper (II) Ions in Aqueous Solution
Water-dispersible ZnS:Mn nanocrystals (NCs) were synthesized by capping the surface with polar L-aspartic acid (Asp) molecules. The obtained ZnS:Mn-Asp NC product was optically and physically characterized using the corresponding spectroscopic methods. The ultra violet-visible (UV-VIS) absorption sp...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302500/ https://www.ncbi.nlm.nih.gov/pubmed/28335210 http://dx.doi.org/10.3390/nano6050082 |
Sumario: | Water-dispersible ZnS:Mn nanocrystals (NCs) were synthesized by capping the surface with polar L-aspartic acid (Asp) molecules. The obtained ZnS:Mn-Asp NC product was optically and physically characterized using the corresponding spectroscopic methods. The ultra violet-visible (UV-VIS) absorption spectrum and photoluminescence (PL) emission spectrum of the NCs showed broad peaks at 320 and 590 nm, respectively. The average particle size measured from the obtained high resolution-transmission electron microscopy (HR-TEM) image was 5.25 nm, which was also in accordance with the Debye-Scherrer calculations using the X-ray diffraction (XRD) data. Moreover, the surface charge and degree of aggregation of the ZnS:Mn-Asp NCs were determined by electrophoretic and hydrodynamic light scattering methods, respectively. These results indicated the formation of agglomerates in water with an average size of 19.8 nm, and a negative surface charge (−4.58 mV) in water at ambient temperature. The negatively-charged NCs were applied as a photosensor for the detection of specific cations in aqueous solution. Accordingly, the ZnS:Mn-Asp NCs showed an exclusive luminescence quenching upon addition of copper (II) cations. The kinetic mechanism study on the luminescence quenching of the NCs by the addition of the Cu(2+) ions proposed an energy transfer through the ionic binding between the two oppositely-charged ZnS:Mn-Asp NCs and Cu(2+) ions. |
---|