Cargando…
The Influence of Carbonaceous Matrices and Electrocatalytic MnO(2) Nanopowders on Lithium-Air Battery Performances
Here, we report new gas diffusion electrodes (GDEs) prepared by mixing two different pore size carbonaceous matrices and pure and silver-doped manganese dioxide nanopowders, used as electrode supports and electrocatalytic materials, respectively. MnO(2) nanoparticles are finely characterized in term...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302542/ https://www.ncbi.nlm.nih.gov/pubmed/28344267 http://dx.doi.org/10.3390/nano6010010 |
_version_ | 1782506565153062912 |
---|---|
author | Minguzzi, Alessandro Longoni, Gianluca Cappelletti, Giuseppe Pargoletti, Eleonora Di Bari, Chiara Locatelli, Cristina Marelli, Marcello Rondinini, Sandra Vertova, Alberto |
author_facet | Minguzzi, Alessandro Longoni, Gianluca Cappelletti, Giuseppe Pargoletti, Eleonora Di Bari, Chiara Locatelli, Cristina Marelli, Marcello Rondinini, Sandra Vertova, Alberto |
author_sort | Minguzzi, Alessandro |
collection | PubMed |
description | Here, we report new gas diffusion electrodes (GDEs) prepared by mixing two different pore size carbonaceous matrices and pure and silver-doped manganese dioxide nanopowders, used as electrode supports and electrocatalytic materials, respectively. MnO(2) nanoparticles are finely characterized in terms of structural (X-ray powder diffraction (XRPD), energy dispersive X-ray (EDX)), morphological (SEM, high-angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM)/TEM), surface (Brunauer Emmet Teller (BET)-Barrett Joyner Halenda (BJH) method) and electrochemical properties. Two mesoporous carbons, showing diverse surface areas and pore volume distributions, have been employed. The GDE performances are evaluated by chronopotentiometric measurements to highlight the effects induced by the adopted materials. The best combination, hollow core mesoporous shell carbon (HCMSC) with 1.0% Ag-doped hydrothermal MnO(2) (M_hydro_1.0%Ag) allows reaching very high specific capacity close to 1400 mAh·g(−1). Considerably high charge retention through cycles is also observed, due to the presence of silver as a dopant for the electrocatalytic MnO(2) nanoparticles. |
format | Online Article Text |
id | pubmed-5302542 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-53025422017-03-21 The Influence of Carbonaceous Matrices and Electrocatalytic MnO(2) Nanopowders on Lithium-Air Battery Performances Minguzzi, Alessandro Longoni, Gianluca Cappelletti, Giuseppe Pargoletti, Eleonora Di Bari, Chiara Locatelli, Cristina Marelli, Marcello Rondinini, Sandra Vertova, Alberto Nanomaterials (Basel) Article Here, we report new gas diffusion electrodes (GDEs) prepared by mixing two different pore size carbonaceous matrices and pure and silver-doped manganese dioxide nanopowders, used as electrode supports and electrocatalytic materials, respectively. MnO(2) nanoparticles are finely characterized in terms of structural (X-ray powder diffraction (XRPD), energy dispersive X-ray (EDX)), morphological (SEM, high-angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM)/TEM), surface (Brunauer Emmet Teller (BET)-Barrett Joyner Halenda (BJH) method) and electrochemical properties. Two mesoporous carbons, showing diverse surface areas and pore volume distributions, have been employed. The GDE performances are evaluated by chronopotentiometric measurements to highlight the effects induced by the adopted materials. The best combination, hollow core mesoporous shell carbon (HCMSC) with 1.0% Ag-doped hydrothermal MnO(2) (M_hydro_1.0%Ag) allows reaching very high specific capacity close to 1400 mAh·g(−1). Considerably high charge retention through cycles is also observed, due to the presence of silver as a dopant for the electrocatalytic MnO(2) nanoparticles. MDPI 2016-01-06 /pmc/articles/PMC5302542/ /pubmed/28344267 http://dx.doi.org/10.3390/nano6010010 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Minguzzi, Alessandro Longoni, Gianluca Cappelletti, Giuseppe Pargoletti, Eleonora Di Bari, Chiara Locatelli, Cristina Marelli, Marcello Rondinini, Sandra Vertova, Alberto The Influence of Carbonaceous Matrices and Electrocatalytic MnO(2) Nanopowders on Lithium-Air Battery Performances |
title | The Influence of Carbonaceous Matrices and Electrocatalytic MnO(2) Nanopowders on Lithium-Air Battery Performances |
title_full | The Influence of Carbonaceous Matrices and Electrocatalytic MnO(2) Nanopowders on Lithium-Air Battery Performances |
title_fullStr | The Influence of Carbonaceous Matrices and Electrocatalytic MnO(2) Nanopowders on Lithium-Air Battery Performances |
title_full_unstemmed | The Influence of Carbonaceous Matrices and Electrocatalytic MnO(2) Nanopowders on Lithium-Air Battery Performances |
title_short | The Influence of Carbonaceous Matrices and Electrocatalytic MnO(2) Nanopowders on Lithium-Air Battery Performances |
title_sort | influence of carbonaceous matrices and electrocatalytic mno(2) nanopowders on lithium-air battery performances |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302542/ https://www.ncbi.nlm.nih.gov/pubmed/28344267 http://dx.doi.org/10.3390/nano6010010 |
work_keys_str_mv | AT minguzzialessandro theinfluenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances AT longonigianluca theinfluenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances AT cappellettigiuseppe theinfluenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances AT pargolettieleonora theinfluenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances AT dibarichiara theinfluenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances AT locatellicristina theinfluenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances AT marellimarcello theinfluenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances AT rondininisandra theinfluenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances AT vertovaalberto theinfluenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances AT minguzzialessandro influenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances AT longonigianluca influenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances AT cappellettigiuseppe influenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances AT pargolettieleonora influenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances AT dibarichiara influenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances AT locatellicristina influenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances AT marellimarcello influenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances AT rondininisandra influenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances AT vertovaalberto influenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances |