Cargando…

The Influence of Carbonaceous Matrices and Electrocatalytic MnO(2) Nanopowders on Lithium-Air Battery Performances

Here, we report new gas diffusion electrodes (GDEs) prepared by mixing two different pore size carbonaceous matrices and pure and silver-doped manganese dioxide nanopowders, used as electrode supports and electrocatalytic materials, respectively. MnO(2) nanoparticles are finely characterized in term...

Descripción completa

Detalles Bibliográficos
Autores principales: Minguzzi, Alessandro, Longoni, Gianluca, Cappelletti, Giuseppe, Pargoletti, Eleonora, Di Bari, Chiara, Locatelli, Cristina, Marelli, Marcello, Rondinini, Sandra, Vertova, Alberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302542/
https://www.ncbi.nlm.nih.gov/pubmed/28344267
http://dx.doi.org/10.3390/nano6010010
_version_ 1782506565153062912
author Minguzzi, Alessandro
Longoni, Gianluca
Cappelletti, Giuseppe
Pargoletti, Eleonora
Di Bari, Chiara
Locatelli, Cristina
Marelli, Marcello
Rondinini, Sandra
Vertova, Alberto
author_facet Minguzzi, Alessandro
Longoni, Gianluca
Cappelletti, Giuseppe
Pargoletti, Eleonora
Di Bari, Chiara
Locatelli, Cristina
Marelli, Marcello
Rondinini, Sandra
Vertova, Alberto
author_sort Minguzzi, Alessandro
collection PubMed
description Here, we report new gas diffusion electrodes (GDEs) prepared by mixing two different pore size carbonaceous matrices and pure and silver-doped manganese dioxide nanopowders, used as electrode supports and electrocatalytic materials, respectively. MnO(2) nanoparticles are finely characterized in terms of structural (X-ray powder diffraction (XRPD), energy dispersive X-ray (EDX)), morphological (SEM, high-angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM)/TEM), surface (Brunauer Emmet Teller (BET)-Barrett Joyner Halenda (BJH) method) and electrochemical properties. Two mesoporous carbons, showing diverse surface areas and pore volume distributions, have been employed. The GDE performances are evaluated by chronopotentiometric measurements to highlight the effects induced by the adopted materials. The best combination, hollow core mesoporous shell carbon (HCMSC) with 1.0% Ag-doped hydrothermal MnO(2) (M_hydro_1.0%Ag) allows reaching very high specific capacity close to  1400 mAh·g(−1). Considerably high charge retention through cycles is also observed, due to the presence of silver as a dopant for the electrocatalytic MnO(2) nanoparticles.
format Online
Article
Text
id pubmed-5302542
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-53025422017-03-21 The Influence of Carbonaceous Matrices and Electrocatalytic MnO(2) Nanopowders on Lithium-Air Battery Performances Minguzzi, Alessandro Longoni, Gianluca Cappelletti, Giuseppe Pargoletti, Eleonora Di Bari, Chiara Locatelli, Cristina Marelli, Marcello Rondinini, Sandra Vertova, Alberto Nanomaterials (Basel) Article Here, we report new gas diffusion electrodes (GDEs) prepared by mixing two different pore size carbonaceous matrices and pure and silver-doped manganese dioxide nanopowders, used as electrode supports and electrocatalytic materials, respectively. MnO(2) nanoparticles are finely characterized in terms of structural (X-ray powder diffraction (XRPD), energy dispersive X-ray (EDX)), morphological (SEM, high-angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM)/TEM), surface (Brunauer Emmet Teller (BET)-Barrett Joyner Halenda (BJH) method) and electrochemical properties. Two mesoporous carbons, showing diverse surface areas and pore volume distributions, have been employed. The GDE performances are evaluated by chronopotentiometric measurements to highlight the effects induced by the adopted materials. The best combination, hollow core mesoporous shell carbon (HCMSC) with 1.0% Ag-doped hydrothermal MnO(2) (M_hydro_1.0%Ag) allows reaching very high specific capacity close to  1400 mAh·g(−1). Considerably high charge retention through cycles is also observed, due to the presence of silver as a dopant for the electrocatalytic MnO(2) nanoparticles. MDPI 2016-01-06 /pmc/articles/PMC5302542/ /pubmed/28344267 http://dx.doi.org/10.3390/nano6010010 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Minguzzi, Alessandro
Longoni, Gianluca
Cappelletti, Giuseppe
Pargoletti, Eleonora
Di Bari, Chiara
Locatelli, Cristina
Marelli, Marcello
Rondinini, Sandra
Vertova, Alberto
The Influence of Carbonaceous Matrices and Electrocatalytic MnO(2) Nanopowders on Lithium-Air Battery Performances
title The Influence of Carbonaceous Matrices and Electrocatalytic MnO(2) Nanopowders on Lithium-Air Battery Performances
title_full The Influence of Carbonaceous Matrices and Electrocatalytic MnO(2) Nanopowders on Lithium-Air Battery Performances
title_fullStr The Influence of Carbonaceous Matrices and Electrocatalytic MnO(2) Nanopowders on Lithium-Air Battery Performances
title_full_unstemmed The Influence of Carbonaceous Matrices and Electrocatalytic MnO(2) Nanopowders on Lithium-Air Battery Performances
title_short The Influence of Carbonaceous Matrices and Electrocatalytic MnO(2) Nanopowders on Lithium-Air Battery Performances
title_sort influence of carbonaceous matrices and electrocatalytic mno(2) nanopowders on lithium-air battery performances
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302542/
https://www.ncbi.nlm.nih.gov/pubmed/28344267
http://dx.doi.org/10.3390/nano6010010
work_keys_str_mv AT minguzzialessandro theinfluenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances
AT longonigianluca theinfluenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances
AT cappellettigiuseppe theinfluenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances
AT pargolettieleonora theinfluenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances
AT dibarichiara theinfluenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances
AT locatellicristina theinfluenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances
AT marellimarcello theinfluenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances
AT rondininisandra theinfluenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances
AT vertovaalberto theinfluenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances
AT minguzzialessandro influenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances
AT longonigianluca influenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances
AT cappellettigiuseppe influenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances
AT pargolettieleonora influenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances
AT dibarichiara influenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances
AT locatellicristina influenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances
AT marellimarcello influenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances
AT rondininisandra influenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances
AT vertovaalberto influenceofcarbonaceousmatricesandelectrocatalyticmno2nanopowdersonlithiumairbatteryperformances