Cargando…
Enhancing the Photocurrent of Top-Cell by Ellipsoidal Silver Nanoparticles: Towards Current-Matched GaInP/GaInAs/Ge Triple-Junction Solar Cells
A way to increase the photocurrent of top-cell is crucial for current-matched and highly-efficient GaInP/GaInAs/Ge triple-junction solar cells. Herein, we demonstrate that ellipsoidal silver nanoparticles (Ag NPs) with better extinction performance and lower fabrication temperature can enhance the l...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302639/ https://www.ncbi.nlm.nih.gov/pubmed/28335225 http://dx.doi.org/10.3390/nano6060098 |
Sumario: | A way to increase the photocurrent of top-cell is crucial for current-matched and highly-efficient GaInP/GaInAs/Ge triple-junction solar cells. Herein, we demonstrate that ellipsoidal silver nanoparticles (Ag NPs) with better extinction performance and lower fabrication temperature can enhance the light harvest of GaInP/GaInAs/Ge solar cells compared with that of spherical Ag NPs. In this method, appropriate thermal treatment parameters for Ag NPs without inducing the dopant diffusion of the tunnel-junction plays a decisive role. Our experimental and theoretical results confirm the ellipsoidal Ag NPs annealed at 350 °C show a better extinction performance than the spherical Ag NPs annealed at 400 °C. The photovoltaic conversion efficiency of the device with ellipsoidal Ag NPs reaches 31.02%, with a nearly 5% relative improvement in comparison with the device without Ag NPs (29.54%). This function of plasmonic NPs has the potential to solve the conflict of sufficient light absorption and efficient carrier collection in GaInP top-cell devices. |
---|