Cargando…

Shape and Charge of Gold Nanomaterials Influence Survivorship, Oxidative Stress and Moulting of Daphnia magna

Engineered nanomaterials (ENMs) are materials with at least one dimension between 1–100 nm. The small size of ENMs results in a large surface area to volume ratio, giving ENMs novel characteristics that are not traditionally exhibited by larger bulk materials. Coupled with large surface area is an e...

Descripción completa

Detalles Bibliográficos
Autores principales: Nasser, Fatima, Davis, Adam, Valsami-Jones, Eugenia, Lynch, Iseult
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302705/
https://www.ncbi.nlm.nih.gov/pubmed/28335350
http://dx.doi.org/10.3390/nano6120222
Descripción
Sumario:Engineered nanomaterials (ENMs) are materials with at least one dimension between 1–100 nm. The small size of ENMs results in a large surface area to volume ratio, giving ENMs novel characteristics that are not traditionally exhibited by larger bulk materials. Coupled with large surface area is an enormous capacity for surface functionalization of ENMs, e.g., with different ligands or surface changes, leading to an almost infinite array of variability of ENMs. Here we explore the effects of various shaped (spheres, rods) and charged (negative, positive) gold ENMs on Daphnia magna (D. magna) in terms of survival, ENM uptake and production of reactive oxygen species (ROS), a key factor in oxidative stress responses. We also investigate the effects of gold ENMs binding to the carapace of D. magna and how this may induce moulting inhibition in addition to toxicity and stress. The findings suggest that ENM shape and surface charge play an important role in determining ENM uptake and toxicity.