Cargando…
Incorporating prior biological knowledge for network-based differential gene expression analysis using differentially weighted graphical LASSO
BACKGROUND: Conventional differential gene expression analysis by methods such as student’s t-test, SAM, and Empirical Bayes often searches for statistically significant genes without considering the interactions among them. Network-based approaches provide a natural way to study these interactions...
Autores principales: | Zuo, Yiming, Cui, Yi, Yu, Guoqiang, Li, Ruijiang, Ressom, Habtom W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5303311/ https://www.ncbi.nlm.nih.gov/pubmed/28187708 http://dx.doi.org/10.1186/s12859-017-1515-1 |
Ejemplares similares
-
An Augmented High-Dimensional Graphical Lasso Method to Incorporate Prior Biological Knowledge for Global Network Learning
por: Zhuang, Yonghua, et al.
Publicado: (2022) -
Tailored graphical lasso for data integration in gene network reconstruction
por: Lingjærde, Camilla, et al.
Publicado: (2021) -
Dynamic incorporation of prior knowledge from multiple domains in biomarker discovery
por: Guan, Xin, et al.
Publicado: (2020) -
Tilting the lasso by knowledge-based post-processing
por: Tharmaratnam, Kukatharmini, et al.
Publicado: (2016) -
Importance-Penalized Joint Graphical Lasso (IPJGL): differential network inference via GGMs
por: Leng, Jiacheng, et al.
Publicado: (2021)