Cargando…

Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin–strain interaction

Cooling a mechanical resonator mode to a sub-thermal state has been a long-standing challenge in physics. This pursuit has recently found traction in the field of optomechanics in which a mechanical mode is coupled to an optical cavity. An alternate method is to couple the resonator to a well-contro...

Descripción completa

Detalles Bibliográficos
Autores principales: MacQuarrie, E. R., Otten, M., Gray, S. K., Fuchs, G. D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5303879/
https://www.ncbi.nlm.nih.gov/pubmed/28165477
http://dx.doi.org/10.1038/ncomms14358
Descripción
Sumario:Cooling a mechanical resonator mode to a sub-thermal state has been a long-standing challenge in physics. This pursuit has recently found traction in the field of optomechanics in which a mechanical mode is coupled to an optical cavity. An alternate method is to couple the resonator to a well-controlled two-level system. Here we propose a protocol to dissipatively cool a room temperature mechanical resonator using a nitrogen-vacancy centre ensemble. The spin ensemble is coupled to the resonator through its orbitally-averaged excited state, which has a spin–strain interaction that has not been previously studied. We experimentally demonstrate that the spin–strain coupling in the excited state is 13.5±0.5 times stronger than the ground state spin–strain coupling. We then theoretically show that this interaction, combined with a high-density spin ensemble, enables the cooling of a mechanical resonator from room temperature to a fraction of its thermal phonon occupancy.