Cargando…

Spontaneous Deposition of Prussian Blue on Multi-Walled Carbon Nanotubes and the Application in an Amperometric Biosensor

A simple method has been developed for the spontaneous deposition of Prussian blue (PB) particles from a solution containing only ferricyanide ions onto conducting substrates such as indium tin oxide glass, glassy carbon disk and carbon nanotube (CNT) materials. Formation of PB deposits was confirme...

Descripción completa

Detalles Bibliográficos
Autores principales: Yao, Yanli, Bai, Xiaoyun, Shiu, Kwok-Keung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5304602/
https://www.ncbi.nlm.nih.gov/pubmed/28348317
http://dx.doi.org/10.3390/nano2040428
Descripción
Sumario:A simple method has been developed for the spontaneous deposition of Prussian blue (PB) particles from a solution containing only ferricyanide ions onto conducting substrates such as indium tin oxide glass, glassy carbon disk and carbon nanotube (CNT) materials. Formation of PB deposits was confirmed by ultraviolet-visible absorption spectrometry and electrochemical techniques. The surface morphology of the PB particles deposited on the substrates was examined by atomic force microscopy and scanning electron microscopy. CNT/PB composite modified glassy carbon electrodes exhibited an electrocatalytic property for hydrogen peroxide reduction. These modified electrodes exhibited a high sensitivity for electrocatalytic reduction of hydrogen peroxide at −0.05 V (vs. Ag|AgCl), probably due to the synergistic effect of CNT with PB. Then, CNT/PB modified electrodes were further developed as amperometric glucose biosensors. These biosensors offered a linear response to glucose concentration from 0.1 to 0.9 mM with good selectivity, high sensitivity of 0.102 A M(−1) cm(−2) and short response time (within 2 s) at a negative operation potential of −0.05 V (vs. Ag|AgCl). The detection limit was estimated to be 0.01 mM at a signal-to-noise ratio of 3.