Cargando…
Energy systems efficiency influences the results of 2,000 m race simulation among elite rowers
HYPOTHESIS: Energy efficiency within an elite group of athletes will ensure metabolic adaptation during training. OBJECTIVES: To identify energy system efficiency and contribution according to exercise intensity, and performance obtained during a 2,000 m race simulation in an elite group of rowers....
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Iuliu Hatieganu University of Medicine and Pharmacy
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5305090/ https://www.ncbi.nlm.nih.gov/pubmed/28246499 http://dx.doi.org/10.15386/cjmed-675 |
Sumario: | HYPOTHESIS: Energy efficiency within an elite group of athletes will ensure metabolic adaptation during training. OBJECTIVES: To identify energy system efficiency and contribution according to exercise intensity, and performance obtained during a 2,000 m race simulation in an elite group of rowers. METHOD: An observational cross-sectional study was conducted in February 2016 in Bucharest, Romania, on a group of 16 elite rowers. Measurements were performed through Cosmed Quark CPET equipment, and Concept 2 ergometer, by conducting a VO2max test over a standard rowing distance of 2,000 m. The analyzed parameters during the test were: HR (bpm), Rf (b/min), VE (l/min), VO2 (ml/min), VCO2 (ml/min), VT (l), O2exp (ml), CO2exp (ml), RER, PaCO2 (mmHg), PaO2 (mmHg), Kcal/min, FAT (g), CHO (g), from which we determined the ventilatory thresholds, and the energy resource used during the specific 2,000 m rowing distance (ATP, ATP+CP, muscle glycogen). RESULTS: We performed an association between HR (180.2±4.80 b/min), and carbohydrate consumption during the sustained effort (41.55±3.99 g) towards determining the energy systems involved: ATP (3.49±1.55%), ATP+CP (18.06±2.99%), muscle glycogen (77.9±3.39%). As a result, completion time (366.3±10.25 s) was significantly correlated with both Rf (p=0.0024), and VO2 (p=0.0166) being also pointed out that ≥5 l VO2 value is associated with an effort time of ≤360 s. (p=0.040, RR=3.50, CI95%=1.02 to 11.96). Thus, the average activation time among muscle ATP (12.81±5.70 s), ATP+CP (66.04±10.17 s, and muscle glycogen (295±9.5 s) are interrelated, and significantly correlated with respiratory parameters. CONCLUSIONS: Decreased total activity time was associated with accessing primary energy source in less time, during effort, improving the body energy power. Its effectiveness was recorded by early carbohydrates access, as a primary energy source, during specific activity performed up to 366 seconds. |
---|