Cargando…
Gene regulatory effects of disease-associated variation in the NRF2 network
Reactive oxygen species (ROS), which are both a natural byproduct of oxidative metabolism and an undesirable byproduct of many environmental stressors, can damage all classes of cellular macromolecules and promote diseases from cancer to neurodegeneration. The actions of ROS are mitigated by the tra...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5305174/ https://www.ncbi.nlm.nih.gov/pubmed/28203648 http://dx.doi.org/10.1016/j.cotox.2016.09.001 |
_version_ | 1782507005359947776 |
---|---|
author | Lacher, Sarah E. Slattery, Matthew |
author_facet | Lacher, Sarah E. Slattery, Matthew |
author_sort | Lacher, Sarah E. |
collection | PubMed |
description | Reactive oxygen species (ROS), which are both a natural byproduct of oxidative metabolism and an undesirable byproduct of many environmental stressors, can damage all classes of cellular macromolecules and promote diseases from cancer to neurodegeneration. The actions of ROS are mitigated by the transcription factor NRF2, which regulates expression of antioxidant genes via its interaction with cis-regulatory antioxidant response elements (AREs). However, despite the seemingly straightforward relationship between the opposing forces of ROS and NRF2, regulatory precision in the NRF2 network is essential. Genetic variants that alter NRF2 stability or alter ARE sequences have been linked to a range of diseases. NRF2 hyperactivating mutations are associated with tumorigenesis. On the subtler end of the spectrum, single nucleotide variants (SNVs) that alter individual ARE sequences have been linked to neurodegenerative disorders including progressive supranuclear palsy and Parkinson’s disease, as well as other diseases. Although the human health implications of NRF2 dysregulation have been recognized for some time, a systems level view of this regulatory network is beginning to highlight key NRF2-targeted AREs consistently associated with disease. |
format | Online Article Text |
id | pubmed-5305174 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
record_format | MEDLINE/PubMed |
spelling | pubmed-53051742017-02-13 Gene regulatory effects of disease-associated variation in the NRF2 network Lacher, Sarah E. Slattery, Matthew Curr Opin Toxicol Article Reactive oxygen species (ROS), which are both a natural byproduct of oxidative metabolism and an undesirable byproduct of many environmental stressors, can damage all classes of cellular macromolecules and promote diseases from cancer to neurodegeneration. The actions of ROS are mitigated by the transcription factor NRF2, which regulates expression of antioxidant genes via its interaction with cis-regulatory antioxidant response elements (AREs). However, despite the seemingly straightforward relationship between the opposing forces of ROS and NRF2, regulatory precision in the NRF2 network is essential. Genetic variants that alter NRF2 stability or alter ARE sequences have been linked to a range of diseases. NRF2 hyperactivating mutations are associated with tumorigenesis. On the subtler end of the spectrum, single nucleotide variants (SNVs) that alter individual ARE sequences have been linked to neurodegenerative disorders including progressive supranuclear palsy and Parkinson’s disease, as well as other diseases. Although the human health implications of NRF2 dysregulation have been recognized for some time, a systems level view of this regulatory network is beginning to highlight key NRF2-targeted AREs consistently associated with disease. 2016-09-28 2016-12 /pmc/articles/PMC5305174/ /pubmed/28203648 http://dx.doi.org/10.1016/j.cotox.2016.09.001 Text en This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Lacher, Sarah E. Slattery, Matthew Gene regulatory effects of disease-associated variation in the NRF2 network |
title | Gene regulatory effects of disease-associated variation in the NRF2 network |
title_full | Gene regulatory effects of disease-associated variation in the NRF2 network |
title_fullStr | Gene regulatory effects of disease-associated variation in the NRF2 network |
title_full_unstemmed | Gene regulatory effects of disease-associated variation in the NRF2 network |
title_short | Gene regulatory effects of disease-associated variation in the NRF2 network |
title_sort | gene regulatory effects of disease-associated variation in the nrf2 network |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5305174/ https://www.ncbi.nlm.nih.gov/pubmed/28203648 http://dx.doi.org/10.1016/j.cotox.2016.09.001 |
work_keys_str_mv | AT lachersarahe generegulatoryeffectsofdiseaseassociatedvariationinthenrf2network AT slatterymatthew generegulatoryeffectsofdiseaseassociatedvariationinthenrf2network |