Cargando…
SELF-BLM: Prediction of drug-target interactions via self-training SVM
Predicting drug-target interactions is important for the development of novel drugs and the repositioning of drugs. To predict such interactions, there are a number of methods based on drug and target protein similarity. Although these methods, such as the bipartite local model (BLM), show promise,...
Autores principales: | Keum, Jongsoo, Nam, Hojung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5305209/ https://www.ncbi.nlm.nih.gov/pubmed/28192537 http://dx.doi.org/10.1371/journal.pone.0171839 |
Ejemplares similares
-
DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences
por: Lee, Ingoo, et al.
Publicado: (2019) -
Prediction of compound-target interactions of natural products using large-scale drug and protein information
por: Keum, Jongsoo, et al.
Publicado: (2016) -
Self Testing Functionality of the LHC BLM System
por: Dehning, B, et al.
Publicado: (2011) -
Sequence-based prediction of protein binding regions and drug–target interactions
por: Lee, Ingoo, et al.
Publicado: (2022) -
GraphATT-DTA: Attention-Based Novel Representation of Interaction to Predict Drug-Target Binding Affinity
por: Bae, Haelee, et al.
Publicado: (2022)