Cargando…
On approximating the modified Bessel function of the second kind
In the article, we prove that the double inequalities [Formula: see text] hold for all [Formula: see text] if and only if [Formula: see text] and [Formula: see text] if [Formula: see text] , where [Formula: see text] is the modified Bessel function of the second kind. As applications, we provide bou...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5306441/ https://www.ncbi.nlm.nih.gov/pubmed/28250694 http://dx.doi.org/10.1186/s13660-017-1317-z |
_version_ | 1782507200698122240 |
---|---|
author | Yang, Zhen-Hang Chu, Yu-Ming |
author_facet | Yang, Zhen-Hang Chu, Yu-Ming |
author_sort | Yang, Zhen-Hang |
collection | PubMed |
description | In the article, we prove that the double inequalities [Formula: see text] hold for all [Formula: see text] if and only if [Formula: see text] and [Formula: see text] if [Formula: see text] , where [Formula: see text] is the modified Bessel function of the second kind. As applications, we provide bounds for [Formula: see text] with [Formula: see text] and present the necessary and sufficient condition such that the function [Formula: see text] is strictly increasing (decreasing) on [Formula: see text] . |
format | Online Article Text |
id | pubmed-5306441 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-53064412017-02-27 On approximating the modified Bessel function of the second kind Yang, Zhen-Hang Chu, Yu-Ming J Inequal Appl Research In the article, we prove that the double inequalities [Formula: see text] hold for all [Formula: see text] if and only if [Formula: see text] and [Formula: see text] if [Formula: see text] , where [Formula: see text] is the modified Bessel function of the second kind. As applications, we provide bounds for [Formula: see text] with [Formula: see text] and present the necessary and sufficient condition such that the function [Formula: see text] is strictly increasing (decreasing) on [Formula: see text] . Springer International Publishing 2017-02-13 2017 /pmc/articles/PMC5306441/ /pubmed/28250694 http://dx.doi.org/10.1186/s13660-017-1317-z Text en © The Author(s) 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Yang, Zhen-Hang Chu, Yu-Ming On approximating the modified Bessel function of the second kind |
title | On approximating the modified Bessel function of the second kind |
title_full | On approximating the modified Bessel function of the second kind |
title_fullStr | On approximating the modified Bessel function of the second kind |
title_full_unstemmed | On approximating the modified Bessel function of the second kind |
title_short | On approximating the modified Bessel function of the second kind |
title_sort | on approximating the modified bessel function of the second kind |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5306441/ https://www.ncbi.nlm.nih.gov/pubmed/28250694 http://dx.doi.org/10.1186/s13660-017-1317-z |
work_keys_str_mv | AT yangzhenhang onapproximatingthemodifiedbesselfunctionofthesecondkind AT chuyuming onapproximatingthemodifiedbesselfunctionofthesecondkind |