Cargando…
Optimizing Neuropsychological Assessments for Cognitive, Behavioral, and Functional Impairment Classification: A Machine Learning Study
Subjects with Alzheimer's disease (AD) show loss of cognitive functions and change in behavioral and functional state affecting the quality of their daily life and that of their families and caregivers. A neuropsychological assessment plays a crucial role in detecting such changes from normal c...
Autores principales: | Battista, Petronilla, Salvatore, Christian, Castiglioni, Isabella |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5307249/ https://www.ncbi.nlm.nih.gov/pubmed/28255200 http://dx.doi.org/10.1155/2017/1850909 |
Ejemplares similares
-
Computerized Neuropsychological Assessment in Aging: Testing Efficacy and Clinical Ecology of Different Interfaces
por: Canini, Matteo, et al.
Publicado: (2014) -
Machine learning‐based cognitive impairment classification with optimal combination of neuropsychological tests
por: Gupta, Abhay, et al.
Publicado: (2020) -
Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach
por: Salvatore, Christian, et al.
Publicado: (2015) -
Machine Learning Decomposition of the Anatomy of Neuropsychological Deficit in Alzheimer’s Disease and Mild Cognitive Impairment
por: Dong, Ningxin, et al.
Publicado: (2022) -
Neuropsychological Testing and Machine Learning Distinguish Alzheimer’s Disease from Other Causes for Cognitive Impairment
por: Gurevich, Pavel, et al.
Publicado: (2017)