Cargando…

A comparison of reference-based algorithms for correcting cell-type heterogeneity in Epigenome-Wide Association Studies

BACKGROUND: Intra-sample cellular heterogeneity presents numerous challenges to the identification of biomarkers in large Epigenome-Wide Association Studies (EWAS). While a number of reference-based deconvolution algorithms have emerged, their potential remains underexplored and a comparative evalua...

Descripción completa

Detalles Bibliográficos
Autores principales: Teschendorff, Andrew E., Breeze, Charles E., Zheng, Shijie C., Beck, Stephan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5307731/
https://www.ncbi.nlm.nih.gov/pubmed/28193155
http://dx.doi.org/10.1186/s12859-017-1511-5
Descripción
Sumario:BACKGROUND: Intra-sample cellular heterogeneity presents numerous challenges to the identification of biomarkers in large Epigenome-Wide Association Studies (EWAS). While a number of reference-based deconvolution algorithms have emerged, their potential remains underexplored and a comparative evaluation of these algorithms beyond tissues such as blood is still lacking. RESULTS: Here we present a novel framework for reference-based inference, which leverages cell-type specific DNAse Hypersensitive Site (DHS) information from the NIH Epigenomics Roadmap to construct an improved reference DNA methylation database. We show that this leads to a marginal but statistically significant improvement of cell-count estimates in whole blood as well as in mixtures involving epithelial cell-types. Using this framework we compare a widely used state-of-the-art reference-based algorithm (called constrained projection) to two non-constrained approaches including CIBERSORT and a method based on robust partial correlations. We conclude that the widely-used constrained projection technique may not always be optimal. Instead, we find that the method based on robust partial correlations is generally more robust across a range of different tissue types and for realistic noise levels. We call the combined algorithm which uses DHS data and robust partial correlations for inference, EpiDISH (Epigenetic Dissection of Intra-Sample Heterogeneity). Finally, we demonstrate the added value of EpiDISH in an EWAS of smoking. CONCLUSIONS: Estimating cell-type fractions and subsequent inference in EWAS may benefit from the use of non-constrained reference-based cell-type deconvolution methods. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-017-1511-5) contains supplementary material, which is available to authorized users.