Cargando…

Feeble Antipyretic, Analgesic, and Anti-inflammatory Activities were Found with Regular Dose 4’-O-β-D-Glucosyl-5-O-Methylvisamminol, One of the Conventional Marker Compounds for Quality Evaluation of Radix Saposhnikoviae

INTRODUCTION: 4’-O-β-D-glucosyl-5-O-methylvisamminol (GML) is a conventional marker compound for quality control of Radix Saposhnikoviae. Despite that, neither pharmacodynamic or pharmacokinetic information is available with regard to GML. As such, the aim of thisstudy was to assess the conventional...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Jing-Ming, Jiang, Hua, Dai, Hong-Liang, Wang, Zi-Wei, Jia, Gui-Zhi, Meng, Xiang-Cai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5307903/
https://www.ncbi.nlm.nih.gov/pubmed/28216902
http://dx.doi.org/10.4103/0973-1296.197637
Descripción
Sumario:INTRODUCTION: 4’-O-β-D-glucosyl-5-O-methylvisamminol (GML) is a conventional marker compound for quality control of Radix Saposhnikoviae. Despite that, neither pharmacodynamic or pharmacokinetic information is available with regard to GML. As such, the aim of thisstudy was to assess the conventional evaluation indices for the quality of Radix Saposhnikoviae. MATERIALS AND METHODS: Pyretic animal model, hot plate test, and ear edema model were established to evaluate and compare the antipyretic, analgesic, and anti-inflammatory effect of the chromone derivativescimifugin, prime-O-glucosylcimifugin (PGCN), and GML in Radix Saposhnikoviae. High performance liquid chromatography separation and analysis was used to obtain pharmacokinetic parameters. Simulated gastric fluid and simulated intestinal fluid was used to investigate the metabolite profiles of PGCN and GML in gastrointestinal tract. RESULTS: Cimifugin exerted a marked dose-dependent antipyretic, analgesic, and anti-inflammatory effect, whereas the effects of PGCN were relatively lower. GML had feeble pharmacodynamic effects. Pharmacokinetic study showed that only cimifugin was detected in the plasma sample of cimifugin and PGCN-treated animals, with drug concentration in the former much higher than the latter. No components were traced in the plasma samples from GML-treated rats. Stability study showed that PGCN and GML was predominantly biotransformed into cimifugin and 5-O-methyvisammiol, respectively. The latter was proven to be extremely unstable in liver tissue homogenate and plasma. CONCLUSIONS: A feeble antipyretic, analgesic, and anti-inflammatory activities was observed when GML was orally delivered. Given that Radix Saposhnikoviae extract is generally administered orally, we speculate that this compound might be a nonpharmacolagically active agent in real usage. Thus, it might be unscientific to evaluate the quality of Radix Saposhnikoviae based on the content of GML. SUMMARY: GML-derived cimifugin, which represents the potential pharma codynamic component of Radix Saposhnikoviae chromones, in plasma was almost nil in contrast to cimifugin and PGCN. And thus, feeble antipyretic, analgesic, and anti-inflammatory activities were found with GML. Abbreviations used: AUC:area under concentration-time curve, DNP:2,4-Dinitrophenol, HPLC:high performance liquid chromatography, HPLC-MS:high performance liquid chromatography- mass spectrography, GML:4’-O-β-D-glucosyl-5-O-methylvisamminol, MVL:5-O-methyvisammiol, PGCN:prime-O-glucosylcimifugin, SGF:alkaline phosphatase. SIF:simulated intestinal fluid