Cargando…
AIRE polymorphism, melanoma antigen-specific T cell immunity, and susceptibility to melanoma
AIRE is involved in susceptibility to melanoma perhaps regulating T cell immunity against melanoma antigens (MA). To address this issue, AIRE and MAGEB2 expressions were measured by real time PCR in medullary thymic epithelial cells (mTECs) from two strains of C57BL/6 mice bearing either T or C alle...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5308622/ https://www.ncbi.nlm.nih.gov/pubmed/27563821 http://dx.doi.org/10.18632/oncotarget.11506 |
Sumario: | AIRE is involved in susceptibility to melanoma perhaps regulating T cell immunity against melanoma antigens (MA). To address this issue, AIRE and MAGEB2 expressions were measured by real time PCR in medullary thymic epithelial cells (mTECs) from two strains of C57BL/6 mice bearing either T or C allelic variant of the rs1800522 AIRE SNP. Moreover, the extent of apoptosis induced by mTECs in MAGEB2-specific T cells and the susceptibility to in vivo melanoma B16F10 cell challenge were compared in the two mouse strains. The C allelic variant, protective in humans against melanoma, induced lower AIRE and MAGEB2 expression in C57BL/6 mouse mTECs than the T allele. Moreover, mTECs expressing the C allelic variant induced lower extent of apoptosis in MAGEB2-specific syngeneic T cells than mTECs bearing the T allelic variant (p < 0.05). Vaccination against MAGEB2 induced higher frequency of MAGEB2-specific CTL and exerted higher protective effect against melanoma development in mice bearing the CC AIRE genotype than in those bearing the TT one (p < 0.05). These findings show that allelic variants of one AIRE SNP may differentially shape the MA-specific T cell repertoire potentially influencing susceptibility to melanoma. |
---|