Cargando…

Synergistic effect of reduced polypeptide micelle for co-delivery of doxorubicin and TRAIL against drug-resistance in breast cancer

Cationic peptides as a non-viral gene vector have become a hotspot of research because of their high transfection efficcacy and safety. Based on our previous study, we synthesized a cationic reduction-responsive vector based on disulfide cross-linked L-arginine, L-histidine and lipoic acid (LHRss) a...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Chuling, Gu, Fenfen, Tai, Zongguang, Yao, Chong, Gong, Chunai, Xia, Qingming, Gao, Yuan, Gao, Shen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5308694/
https://www.ncbi.nlm.nih.gov/pubmed/27557520
http://dx.doi.org/10.18632/oncotarget.11451
Descripción
Sumario:Cationic peptides as a non-viral gene vector have become a hotspot of research because of their high transfection efficcacy and safety. Based on our previous study, we synthesized a cationic reduction-responsive vector based on disulfide cross-linked L-arginine, L-histidine and lipoic acid (LHRss) as the co-carrier of both doxorubicin (DOX) and the necrosis factor-related apoptosis-inducing ligand (pTRAIL). The LHRss/DOX/TRAIL construct has reduction-sensitive behavior and an enhanced endosomal escape ability to increase the cytotoxicity of DOX and the transfection efficiency. Further, the LHRss/DOX/TRAIL construct increased the accumulation of DOX and promoted the expression of pTRAIL, thus increasing cellular apoptosis by 83.7% in MCF-7/ADR cells. In addition, the in vivo biodistribution results showed that the LHRss/DOX/TRAIL construct could target tumors well. The in vivo anti-tumor effect study demonstrated that the LHRss/DOX/TRAIL construct inhibited tumor growth markedly, with a tumor inhibitory rate of 94.0%. The co-delivery system showed a significant synergistic anti-tumor effect. The LHRss/DOX/TRAIL construct may prove to be a promising co-delivery vector for the effective treatment of drug resistant breast cancer.