Cargando…
Mitochondrial efficiency and exercise economy following heat stress: a potential role of uncoupling protein 3
Heat stress has been reported to reduce uncoupling proteins (UCP) expression, which in turn should improve mitochondrial efficiency. Such an improvement in efficiency may translate to the systemic level as greater exercise economy. However, neither the heat‐induced improvement in mitochondrial effic...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5309567/ https://www.ncbi.nlm.nih.gov/pubmed/28174343 http://dx.doi.org/10.14814/phy2.13054 |
_version_ | 1782507727944155136 |
---|---|
author | Salgado, Roy M. Sheard, Ailish C. Vaughan, Roger A. Parker, Daryl L. Schneider, Suzanne M. Kenefick, Robert W. McCormick, James J. Gannon, Nicholas P. Van Dusseldorp, Trisha A. Kravitz, Len R. Mermier, Christine M. |
author_facet | Salgado, Roy M. Sheard, Ailish C. Vaughan, Roger A. Parker, Daryl L. Schneider, Suzanne M. Kenefick, Robert W. McCormick, James J. Gannon, Nicholas P. Van Dusseldorp, Trisha A. Kravitz, Len R. Mermier, Christine M. |
author_sort | Salgado, Roy M. |
collection | PubMed |
description | Heat stress has been reported to reduce uncoupling proteins (UCP) expression, which in turn should improve mitochondrial efficiency. Such an improvement in efficiency may translate to the systemic level as greater exercise economy. However, neither the heat‐induced improvement in mitochondrial efficiency (due to decrease in UCP), nor its potential to improve economy has been studied. Determine: (i) if heat stress in vitro lowers UCP3 thereby improving mitochondrial efficiency in C2C12 myocytes; (ii) whether heat acclimation (HA) in vivo improves exercise economy in trained individuals; and (iii) the potential improved economy during exercise at altitude. In vitro, myocytes were heat stressed for 24 h (40°C), followed by measurements of UCP3, mitochondrial uncoupling, and efficiency. In vivo, eight trained males completed: (i) pre‐HA testing; (ii) 10 days of HA (40°C, 20% RH); and (iii) post‐HA testing. Pre‐ and posttesting consisted of maximal exercise test and submaximal exercise at two intensities to assess exercise economy at 1600 m (Albuquerque, NM) and 4350 m. Heat‐stressed myocytes displayed significantly reduced UCP3 mRNA expression and, mitochondrial uncoupling (77.1 ± 1.2%, P < 0.0001) and improved mitochondrial efficiency (62.9 ± 4.1%, P < 0.0001) compared to control. In humans, at both 1600 m and 4350 m, following HA, submaximal exercise economy did not change at low and moderate exercise intensities. Our findings indicate that while heat‐induced reduction in UCP3 improves mitochondrial efficiency in vitro, this is not translated to in vivo improvement of exercise economy at 1600 m or 4350 m. |
format | Online Article Text |
id | pubmed-5309567 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-53095672017-02-22 Mitochondrial efficiency and exercise economy following heat stress: a potential role of uncoupling protein 3 Salgado, Roy M. Sheard, Ailish C. Vaughan, Roger A. Parker, Daryl L. Schneider, Suzanne M. Kenefick, Robert W. McCormick, James J. Gannon, Nicholas P. Van Dusseldorp, Trisha A. Kravitz, Len R. Mermier, Christine M. Physiol Rep Original Research Heat stress has been reported to reduce uncoupling proteins (UCP) expression, which in turn should improve mitochondrial efficiency. Such an improvement in efficiency may translate to the systemic level as greater exercise economy. However, neither the heat‐induced improvement in mitochondrial efficiency (due to decrease in UCP), nor its potential to improve economy has been studied. Determine: (i) if heat stress in vitro lowers UCP3 thereby improving mitochondrial efficiency in C2C12 myocytes; (ii) whether heat acclimation (HA) in vivo improves exercise economy in trained individuals; and (iii) the potential improved economy during exercise at altitude. In vitro, myocytes were heat stressed for 24 h (40°C), followed by measurements of UCP3, mitochondrial uncoupling, and efficiency. In vivo, eight trained males completed: (i) pre‐HA testing; (ii) 10 days of HA (40°C, 20% RH); and (iii) post‐HA testing. Pre‐ and posttesting consisted of maximal exercise test and submaximal exercise at two intensities to assess exercise economy at 1600 m (Albuquerque, NM) and 4350 m. Heat‐stressed myocytes displayed significantly reduced UCP3 mRNA expression and, mitochondrial uncoupling (77.1 ± 1.2%, P < 0.0001) and improved mitochondrial efficiency (62.9 ± 4.1%, P < 0.0001) compared to control. In humans, at both 1600 m and 4350 m, following HA, submaximal exercise economy did not change at low and moderate exercise intensities. Our findings indicate that while heat‐induced reduction in UCP3 improves mitochondrial efficiency in vitro, this is not translated to in vivo improvement of exercise economy at 1600 m or 4350 m. John Wiley and Sons Inc. 2017-02-08 /pmc/articles/PMC5309567/ /pubmed/28174343 http://dx.doi.org/10.14814/phy2.13054 Text en © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Salgado, Roy M. Sheard, Ailish C. Vaughan, Roger A. Parker, Daryl L. Schneider, Suzanne M. Kenefick, Robert W. McCormick, James J. Gannon, Nicholas P. Van Dusseldorp, Trisha A. Kravitz, Len R. Mermier, Christine M. Mitochondrial efficiency and exercise economy following heat stress: a potential role of uncoupling protein 3 |
title | Mitochondrial efficiency and exercise economy following heat stress: a potential role of uncoupling protein 3 |
title_full | Mitochondrial efficiency and exercise economy following heat stress: a potential role of uncoupling protein 3 |
title_fullStr | Mitochondrial efficiency and exercise economy following heat stress: a potential role of uncoupling protein 3 |
title_full_unstemmed | Mitochondrial efficiency and exercise economy following heat stress: a potential role of uncoupling protein 3 |
title_short | Mitochondrial efficiency and exercise economy following heat stress: a potential role of uncoupling protein 3 |
title_sort | mitochondrial efficiency and exercise economy following heat stress: a potential role of uncoupling protein 3 |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5309567/ https://www.ncbi.nlm.nih.gov/pubmed/28174343 http://dx.doi.org/10.14814/phy2.13054 |
work_keys_str_mv | AT salgadoroym mitochondrialefficiencyandexerciseeconomyfollowingheatstressapotentialroleofuncouplingprotein3 AT sheardailishc mitochondrialefficiencyandexerciseeconomyfollowingheatstressapotentialroleofuncouplingprotein3 AT vaughanrogera mitochondrialefficiencyandexerciseeconomyfollowingheatstressapotentialroleofuncouplingprotein3 AT parkerdaryll mitochondrialefficiencyandexerciseeconomyfollowingheatstressapotentialroleofuncouplingprotein3 AT schneidersuzannem mitochondrialefficiencyandexerciseeconomyfollowingheatstressapotentialroleofuncouplingprotein3 AT kenefickrobertw mitochondrialefficiencyandexerciseeconomyfollowingheatstressapotentialroleofuncouplingprotein3 AT mccormickjamesj mitochondrialefficiencyandexerciseeconomyfollowingheatstressapotentialroleofuncouplingprotein3 AT gannonnicholasp mitochondrialefficiencyandexerciseeconomyfollowingheatstressapotentialroleofuncouplingprotein3 AT vandusseldorptrishaa mitochondrialefficiencyandexerciseeconomyfollowingheatstressapotentialroleofuncouplingprotein3 AT kravitzlenr mitochondrialefficiencyandexerciseeconomyfollowingheatstressapotentialroleofuncouplingprotein3 AT mermierchristinem mitochondrialefficiencyandexerciseeconomyfollowingheatstressapotentialroleofuncouplingprotein3 |