Cargando…

Hemodynamic responses are reduced with aerobic compared with resistance blood flow restriction exercise

The hemodynamics of light‐load exercise with an applied blood‐flow restriction (BFR) have not been extensively compared between light‐intensity, BFR, and high‐intensity forms of both resistance and aerobic exercise in the same participant population. Therefore, the purpose of this study was to use a...

Descripción completa

Detalles Bibliográficos
Autores principales: May, Anthony K., Brandner, Christopher R., Warmington, Stuart A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5309582/
https://www.ncbi.nlm.nih.gov/pubmed/28183863
http://dx.doi.org/10.14814/phy2.13142
Descripción
Sumario:The hemodynamics of light‐load exercise with an applied blood‐flow restriction (BFR) have not been extensively compared between light‐intensity, BFR, and high‐intensity forms of both resistance and aerobic exercise in the same participant population. Therefore, the purpose of this study was to use a randomized crossover design to examine the hemodynamic responses to resistance and aerobic BFR exercise in comparison with a common high‐intensity and light‐intensity non‐BFR exercise. On separate occasions participants completed a leg‐press (resistance) or treadmill (aerobic) trial. Each trial comprised a light‐intensity bout (LI) followed by a light‐intensity bout with BFR (80% resting systolic blood pressure (LI+BFR)), then a high‐intensity bout (HI). To characterize the hemodynamic response, measures of cardiac output, stroke volume, heart rate and blood pressure were taken at baseline and exercise for each bout. Exercising hemodynamics for leg‐press LI+BFR most often resembled those for HI and were greater than LI (e.g. for systolic blood pressure LI+BFR = 152 ± 3 mmHg; HI = 153 ± 3; LI = 143 ± 3 P < 0.05). However, exercising hemodynamics for treadmill LI+BFR most often resembled those for LI and were lower than HI (e.g. for systolic pressure LI+BFR = 124 ± 2 mmHg; LI = 123 ± 2; HI = 140 ± 3 P < 0.05). In conclusion, the hemodynamic response for light aerobic (walking) BFR exercise suggests this mode of BFR exercise may be preferential for chronic use to develop muscle size and strength, and other health benefits in certain clinical populations that are contraindicated to heavy‐load resistance exercise.