Cargando…
Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides
Slow light has been widely utilized to obtain enhanced nonlinearities, enhanced spontaneous emissions and increased phase shifts owing to its ability to promote light–matter interactions. By incorporating a graphene on a slow-light silicon photonic crystal waveguide, here we experimentally demonstra...
Autores principales: | Yan, Siqi, Zhu, Xiaolong, Frandsen, Lars Hagedorn, Xiao, Sanshui, Mortensen, N. Asger, Dong, Jianji, Ding, Yunhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5309776/ https://www.ncbi.nlm.nih.gov/pubmed/28181531 http://dx.doi.org/10.1038/ncomms14411 |
Ejemplares similares
-
Dispersion-controlled slow light in photonic crystal waveguides
por: Baba, Toshihiko, et al.
Publicado: (2009) -
Experimental GVD engineering in slow light slot photonic crystal waveguides
por: Serna, Samuel, et al.
Publicado: (2016) -
Slow light bimodal interferometry in one-dimensional photonic crystal waveguides
por: Torrijos-Morán, Luis, et al.
Publicado: (2021) -
Polarization Control in Integrated Graphene-Silicon Quantum Photonics Waveguides
por: Cammarata, Simone, et al.
Publicado: (2022) -
Improved Slow Light Capacity In Graphene-based Waveguide
por: Hao, Ran, et al.
Publicado: (2015)