Cargando…

Tunable thermal expansion in framework materials through redox intercalation

Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework-type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Jun, Gao, Qilong, Sanson, Andrea, Jiang, Xingxing, Huang, Qingzhen, Carnera, Alberto, Rodriguez, Clara Guglieri, Olivi, Luca, Wang, Lei, Hu, Lei, Lin, Kun, Ren, Yang, Lin, Zheshuai, Wang, Cong, Gu, Lin, Deng, Jinxia, Attfield, J. Paul, Xing, Xianran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5309840/
https://www.ncbi.nlm.nih.gov/pubmed/28181576
http://dx.doi.org/10.1038/ncomms14441
Descripción
Sumario:Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework-type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF(3), doped with 10% Fe to enable reduction. The small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. Redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion.