Cargando…

Surface single-molecule dynamics controlled by entropy at low temperatures

Configuration transitions of individual molecules and atoms on surfaces are traditionally described using an Arrhenius equation with energy barrier and pre-exponential factor (attempt rate) parameters. Characteristic parameters can vary even for identical systems, and pre-exponential factors sometim...

Descripción completa

Detalles Bibliográficos
Autores principales: Gehrig, J. C., Penedo, M., Parschau, M., Schwenk, J., Marioni, M. A., Hudson, E. W., Hug, H. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5309842/
https://www.ncbi.nlm.nih.gov/pubmed/28181501
http://dx.doi.org/10.1038/ncomms14404
_version_ 1782507779061186560
author Gehrig, J. C.
Penedo, M.
Parschau, M.
Schwenk, J.
Marioni, M. A.
Hudson, E. W.
Hug, H. J.
author_facet Gehrig, J. C.
Penedo, M.
Parschau, M.
Schwenk, J.
Marioni, M. A.
Hudson, E. W.
Hug, H. J.
author_sort Gehrig, J. C.
collection PubMed
description Configuration transitions of individual molecules and atoms on surfaces are traditionally described using an Arrhenius equation with energy barrier and pre-exponential factor (attempt rate) parameters. Characteristic parameters can vary even for identical systems, and pre-exponential factors sometimes differ by orders of magnitude. Using low-temperature scanning tunnelling microscopy (STM) to measure an individual dibutyl sulfide molecule on Au(111), we show that the differences arise when the relative position of tip apex and molecule changes by a fraction of the molecule size. Altering the tip position on that scale modifies the transition's barrier and attempt rate in a highly correlated fashion, which results in a single-molecular enthalpy-entropy compensation. Conversely, appropriately positioning the STM tip allows selecting the operating point on the compensation line and modifying the transition rates. The results highlight the need to consider entropy in transition rates of single molecules, even at low temperatures.
format Online
Article
Text
id pubmed-5309842
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-53098422017-02-27 Surface single-molecule dynamics controlled by entropy at low temperatures Gehrig, J. C. Penedo, M. Parschau, M. Schwenk, J. Marioni, M. A. Hudson, E. W. Hug, H. J. Nat Commun Article Configuration transitions of individual molecules and atoms on surfaces are traditionally described using an Arrhenius equation with energy barrier and pre-exponential factor (attempt rate) parameters. Characteristic parameters can vary even for identical systems, and pre-exponential factors sometimes differ by orders of magnitude. Using low-temperature scanning tunnelling microscopy (STM) to measure an individual dibutyl sulfide molecule on Au(111), we show that the differences arise when the relative position of tip apex and molecule changes by a fraction of the molecule size. Altering the tip position on that scale modifies the transition's barrier and attempt rate in a highly correlated fashion, which results in a single-molecular enthalpy-entropy compensation. Conversely, appropriately positioning the STM tip allows selecting the operating point on the compensation line and modifying the transition rates. The results highlight the need to consider entropy in transition rates of single molecules, even at low temperatures. Nature Publishing Group 2017-02-09 /pmc/articles/PMC5309842/ /pubmed/28181501 http://dx.doi.org/10.1038/ncomms14404 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Gehrig, J. C.
Penedo, M.
Parschau, M.
Schwenk, J.
Marioni, M. A.
Hudson, E. W.
Hug, H. J.
Surface single-molecule dynamics controlled by entropy at low temperatures
title Surface single-molecule dynamics controlled by entropy at low temperatures
title_full Surface single-molecule dynamics controlled by entropy at low temperatures
title_fullStr Surface single-molecule dynamics controlled by entropy at low temperatures
title_full_unstemmed Surface single-molecule dynamics controlled by entropy at low temperatures
title_short Surface single-molecule dynamics controlled by entropy at low temperatures
title_sort surface single-molecule dynamics controlled by entropy at low temperatures
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5309842/
https://www.ncbi.nlm.nih.gov/pubmed/28181501
http://dx.doi.org/10.1038/ncomms14404
work_keys_str_mv AT gehrigjc surfacesinglemoleculedynamicscontrolledbyentropyatlowtemperatures
AT penedom surfacesinglemoleculedynamicscontrolledbyentropyatlowtemperatures
AT parschaum surfacesinglemoleculedynamicscontrolledbyentropyatlowtemperatures
AT schwenkj surfacesinglemoleculedynamicscontrolledbyentropyatlowtemperatures
AT marionima surfacesinglemoleculedynamicscontrolledbyentropyatlowtemperatures
AT hudsonew surfacesinglemoleculedynamicscontrolledbyentropyatlowtemperatures
AT hughj surfacesinglemoleculedynamicscontrolledbyentropyatlowtemperatures