Cargando…
Machine-learned approximations to Density Functional Theory Hamiltonians
Large scale Density Functional Theory (DFT) based electronic structure calculations are highly time consuming and scale poorly with system size. While semi-empirical approximations to DFT result in a reduction in computational time versus ab initio DFT, creating such approximations involves signific...
Autores principales: | Hegde, Ganesh, Bowen, R. Chris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5309850/ https://www.ncbi.nlm.nih.gov/pubmed/28198471 http://dx.doi.org/10.1038/srep42669 |
Ejemplares similares
-
Evanescent Wave Approximation for Non-Hermitian Hamiltonians
por: Militello, Benedetto, et al.
Publicado: (2020) -
Machine Learning Density Functionals from the Random-Phase
Approximation
por: Riemelmoser, Stefan, et al.
Publicado: (2023) -
Approximations with curves of relative equilibria in hamiltonian systems with dissipation
por: Derks, G, et al.
Publicado: (1995) -
Quantum chemical accuracy from density functional approximations via machine learning
por: Bogojeski, Mihail, et al.
Publicado: (2020) -
SPA(H)M: the spectrum of approximated Hamiltonian matrices representations
por: Fabrizio, Alberto, et al.
Publicado: (2022)