Cargando…
Sparse kernel canonical correlation analysis for discovery of nonlinear interactions in high-dimensional data
BACKGROUND: Advance in high-throughput technologies in genomics, transcriptomics, and metabolomics has created demand for bioinformatics tools to integrate high-dimensional data from different sources. Canonical correlation analysis (CCA) is a statistical tool for finding linear associations between...
Autores principales: | Yoshida, Kosuke, Yoshimoto, Junichiro, Doya, Kenji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310015/ https://www.ncbi.nlm.nih.gov/pubmed/28196464 http://dx.doi.org/10.1186/s12859-017-1543-x |
Ejemplares similares
-
Robust sparse canonical correlation analysis
por: Wilms, Ines, et al.
Publicado: (2016) -
Group sparse canonical correlation analysis for genomic data integration
por: Lin, Dongdong, et al.
Publicado: (2013) -
Sparse canonical correlation analysis for identifying, connecting and completing gene-expression networks
por: Waaijenborg, Sandra, et al.
Publicado: (2009) -
Identification of multimodal brain imaging association via a parameter decomposition based sparse multi-view canonical correlation analysis method
por: Zhang, Jin, et al.
Publicado: (2022) -
A general index for linear and nonlinear correlations for high dimensional genomic data
por: Yao, Zhihao, et al.
Publicado: (2020)